Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T14:48:21.008Z Has data issue: false hasContentIssue false

Third-order structure functions for isotropic turbulence with bidirectional energy transfer

Published online by Cambridge University Press:  02 September 2019

Jin-Han Xie*
Affiliation:
Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
Oliver Bühler
Affiliation:
Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
*
Email address for correspondence: [email protected]

Abstract

We derive and test a new heuristic theory for third-order structure functions that resolves the forcing scale in the scenario of simultaneous spectral energy transfer to both small and large scales, which can occur naturally, for example, in rotating stratified turbulence or magnetohydrodynamical (MHD) turbulence. The theory has three parameters – namely the upscale/downscale energy transfer rates and the forcing scale – and it includes the classic inertial-range theories as local limits. When applied to measured data, our global-in-scale theory can deduce the energy transfer rates using the full range of data, therefore it has broader applications compared with the local theories, especially in situations where the data is imperfect. In addition, because of the resolution of forcing scales, the new theory can detect the scales of energy input, which was impossible before. We test our new theory with a two-dimensional simulation of MHD turbulence.

Type
JFM Rapids
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexakis, A. & Biferale, L. 2018 Cascades and transitions in turbulent flows. Phys. Rep. 767–769, 1101.Google Scholar
Benavides, S. J. & Alexakis, A. 2017 Critical transitions in thin layer turbulence. J. Fluid Mech. 822, 364385.10.1017/jfm.2017.293Google Scholar
Bernard, D. 1999 Three-point velocity correlation functions in two-dimensional forced turbulence. Phys. Rev. E 60 (5), 61846187.Google Scholar
Byrne, D., Xia, H. & Shats, M. 2011 Robust inverse energy cascade and turbulence structure in three-dimensional layers of fluid. Phys. Fluid 23, 095109.10.1063/1.3638620Google Scholar
Byrne, D. & Zhang, J. A. 2013 Height-dependent transition from 3-D to 2-D turbulence in the hurricane boundary layer. Geophys. Res. Lett. 40, 14391442.10.1002/grl.50335Google Scholar
Celani, A., Musacchio, S. & Vincenzi, D. 2010 Turbulence in more than two and less than three dimensions. Phys. Res. Lett. 104, 184506.10.1103/PhysRevLett.104.184506Google Scholar
Cho, J. Y. N. & Lindborg, E. 2001 Horizontal velocity structure functions in the upper troposphere and lower stratosphere 1. Observations. J. Geophys. Res. 106 (D10), 1022310232.10.1029/2000JD900814Google Scholar
Deusebio, E., Augier, P. & Lindborg, E. 2014 Third-order structure functions in rotating and stratified turbulence: a comparison between numerical, analytical and observational results. J. Fluid Mech. 755, 294313.10.1017/jfm.2014.414Google Scholar
Frisch, U. 1995 Turbulence: the Legacy of A. N. Kolmogorov. Cambridge University Press.10.1017/CBO9781139170666Google Scholar
Gallet, B. & Doering, C. R. 2015 Exact two-dimensionalization of low-magnetic-Reynolds-number flows subject to a strong magnetic field. J. Fluid Mech. 773, 154177.10.1017/jfm.2015.232Google Scholar
Kolmogorov, A. N. 1941 Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 1618.Google Scholar
Kraichnan, R. H. 1971 Inertial-range transfer in two- and three-dimensional turbulence. J. Fluid Mech. 47, 525535.10.1017/S0022112071001216Google Scholar
Kraichnan, R. H. 1982 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 14171423.10.1063/1.1762301Google Scholar
Kurien, S., Smith, L. & Wingate, B. 2006 On the two-point correlation of potential vorticity in rotating and stratified turbulence. J. Fluid Mech. 555, 131140.10.1017/S0022112006009116Google Scholar
Lindborg, E. 1999 Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech. 388, 259288.10.1017/S0022112099004851Google Scholar
Lindborg, E. 2007 Third-order structure function relations for quasi-geostrophic turbulence. J. Fluid Mech. 572, 255260.10.1017/S0022112006003697Google Scholar
Marino, R., Pouquet, A. & Rosenberg, D. 2015 Resolving the paradox of oceanic large-scale balance and small-scale mixing. Phys. Rev. Lett. 114, 114504.10.1103/PhysRevLett.114.114504Google Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, Volume II: Mechanics of Turbulence. Dover, (reprinted 2007).Google Scholar
Podesta, J. J. 2008 Laws for third-order moments in homogeneous anisotropic incompressible magnetohydrodynamic turbulence. J. Fluid Mech. 609, 171194.10.1017/S0022112008002280Google Scholar
Pouquet, A., Marino, R., Mininni, P. D. & Rosenberg, D. 2017 Dual constant-flux energy cascades to both large scales and small scales. Phys. Rev. Fluids 29, 111108.Google Scholar
Seshasayanan, K. & Alexakis, A. 2016 Critical behavior in the inverse to forward energy transition in two-dimensional magnetohydrodynamic flow. Phys. Rev. E 93, 013104.Google Scholar
Seshasayanan, K., Benavides, S. J. & Alexakis, A. 2014 On the edge of an inverse cascade. Phys. Rev. E 90, 051003(R).Google Scholar
Smith, K. S., Boccaletti, G., Henning, C. C., Marinov, I., Tam, C. Y., Held, I. M. & Vallis, G. K. 2002 Turbulent diffusion in the geostrophic inverse cascade. J. Fluid Mech. 469, 1348.10.1017/S0022112002001763Google Scholar
Sorriso-Valvo, L., Marino, R., Carbone, V., Noullez, A., Lepreti, F., Veltri, P., Bruno, R., Bavassano, B. & Pietropaolo, E. 2007 Observation of inertial energy cascade in interplanetary space plasma. Phys. Res. Lett. 99, 115001.10.1103/PhysRevLett.99.115001Google Scholar
Xie, J.-H. & Bühler, O. 2018 Exact third-order structure functions for two-dimensional turbulence. J. Fluid Mech. 851, 672686.10.1017/jfm.2018.528Google Scholar
Xie, J.-H. & Bühler, O. 2019 Two-dimensional isotropic inertia–gravity wave turbulence. J. Fluid Mech. 872, 752783.10.1017/jfm.2019.406Google Scholar
Yakhot, V. 1999 Two-dimensional turbulence in the inverse cascade range. Phys. Rev. E 60 (5), 55445551.Google Scholar
Young, R. M. B. & Read, P. L. 2017 Forward and inverse kinetic energy cascades in Jupiter’s turbulent weather layer. Nat. Phys. 13, 11351140.10.1038/nphys4227Google Scholar