Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T06:35:19.919Z Has data issue: false hasContentIssue false

The thermohaline Rayleigh-Jeffreys problem

Published online by Cambridge University Press:  28 March 2006

D. A. Nield
Affiliation:
Department of Mathematics, University of Auckland, New Zealand

Abstract

The onset of convection induced by thermal and solute concentration gradients, in a horizontal layer of a viscous fluid, is studied by means of linear stability analysis. A Fourier series method is used to obtain the eigenvalue equation, which involves a thermal Rayleigh number R and an analogous solute Rayleigh number S, for a general set of boundary conditions. Numerical solutions are obtained for selected cases. Both oscillatory and monotonic instability are considered, but only the latter is treated in detail. The former can occur when a strongly stabilizing solvent gradient is opposed by a destablizing thermal gradient. When the same boundary equations are required to be satisfied by the temperature and concentration perturbations, the monotonic stability boundary curve in the (R, S)-plane is a straight line. Otherwise this curve is concave towards the origin. For certain combinations of boundary conditions the critical value of R does not depend on S (for some range of S) or vice versa. This situation pertains when the critical horizontal wave-number is zero.

A general discussion of the possibility and significance of convection at ‘zero’ wave-number (single convection cell) is presented in an appendix.

Type
Research Article
Copyright
© 1967 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benard, H. 1900 C.R. Acad. Sci., Paris 130, 10047 and 10658.
Bénard, H. 1901 Ann. Chim. Phys. 23, 62144.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford: Clarendon Press.
Gershuni, G. Z. & Zhukhovitskii, E. M. 1963 Prikl. Mat. Mekh. 27, 78493. English translation in J. Appl. Math. Mech. 27, 1197–204.
Hoare, R. A. 1966 Nature, Lond. 210, 7879.
Hurle, D. T. J., Jakeman, E. & Pike, E. R. 1967 Proc. Roy. Soc A 296, 46975.
Jeffreys, H. 1926 Phil. Mag. 2, 83344.
Jeffreys, H. 1928 Proc. Roy. Soc A 118, 195208.
Lieber, P. & Rintel, L. 1963 Convective instability of a horizontal layer of fluid with maintained concentration of diffusive substance and temperature on the boundaries. Rept. MD-6, Inst. Engrg Res., Univ. of Calif., Berkeley.
Nield, D. A. 1964 J. Fluid Mech. 19, 34152.
Nield, D. A. 1965 Proc. 2nd Australasian Conf. Hydraulics and Fluid Mech., University of Auckland, C 4556.
Nield, D. A. 1966a Z.A.M.P. 17, 22632.
Nield, D. A. 1966b Extended Theory of the Bénard Convection Problem. Ph.D. Thesis, Univ. of Auckland.
Pearson, J. R. A. 1958 J. Fluid Mech. 4, 489500.
Rayleigh, Lord 1916 Phil. Mag. 32, 52946.
Reid, W. H. & Harris, D. L. 1958 Phys. Fluids 1, 10210.
Sani, R. 1965 Amer. Inst. Chem. Engrs J. 11, 97180.
Shirtcliffe, T. G. L. 1964 J. Geophys. Res. 69, 525768.
Shirtcliffe, T. G. L. 1967 Nature, Lond. 213, 48990.
Sparrow, E. M., Goldstein, R. J. & Jonsson, V. K. 1964 J. Fluid Mech. 18, 51328.
Stern, M. E. 1960 Tellus 12, 1725.
Tabor, H. & Matz, R. 1965 Solar Energy 9, 17782.
Turner, J. S. & Stommel, H. 1964 Proc. Natn. Acad. Sci. 52, 4953.
Veronis, G. 1965 J. Marine Res. 23, 117.
Vertgeim, B. A. 1955 Prikl. Mat. Mekh. 19, 74550.
Walin, G. 1964 Tellus 16, 389393.
Weinberger, H. 1962 Stability Criteria for Liquid Systems with Temperature and Concentration Gradients. Publ. Nat. Phys. Lab. Israel.
Weinberger, H. 1964 Solar Energy 8, 4556.
Weiss, N. O. 1964 Phil. Trans. Roy. Soc A 256, 99147.
Yih, C.-S. 1965 Dynamics of Nonhomogeneous Fluids. New York: Macmillan.