Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T02:31:02.084Z Has data issue: false hasContentIssue false

Thermocapillary dynamics of a surfactant-laden droplet with internal thermal singularity

Published online by Cambridge University Press:  18 October 2023

Arindam Basak
Affiliation:
Department of Mathematics, Indian Institute of Technology Kharagpur, West Bengal 721302, India
Rajaram Lakkaraju
Affiliation:
TuRbulent Interfaces and Dispersion Group, Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
G.P. Raja Sekhar*
Affiliation:
Department of Mathematics, Indian Institute of Technology Kharagpur, West Bengal 721302, India
*
Email address for correspondence: [email protected]

Abstract

Thermocapillary droplets with internal thermal singularities have potential applications in drug delivery and cell analysis. Inspired by the work of Pak et al. (J. Fluid Mech., vol. 753, 2014, pp. 535–552), which was investigated for a surfactant-laden non-deformable droplet in an isothermal Poiseuille flow, we have explored the droplet dynamics by taking account of additional internal thermal singularities, namely monopole and dipole. A generalized mathematical model is developed, which is solved by using the solenoidal decomposition to describe the flow field in any arbitrary Stokes flow, and results are shown extensively for the case of a non-isothermal Poiseuille flow. Under small Péclet number ($Pe_s$) limit, the droplet with an off-centred monopole or a dipole oriented along the flow direction shows cross-stream migration at $O(Pe_s^2)$. However, a dipole oriented perpendicular to the flow direction results in an $O(1)$ effect due to thermocapillarity, and from $O(Pe_s)$ onwards, we observe the combined impact of thermocapillary and surfactant-induced Marangoni stresses. As a surprise, we see cross-stream migration of the droplet from the Poiseuille flow centreline in a non-isothermal field, in contrast to existing findings which rule out any cross-stream migration. We show the trade-off between thermal Marangoni number ($Ma_T$) and surfactant Marangoni number ($Ma_\varGamma$). Our findings on droplet dynamics inspire new possibilities for microfluidics-based design.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, K., Kerbage, C., Hunt, T.P., Westervelt, R.M., Link, D.R. & Weitz, D.A. 2006 Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl. Phys. Lett. 88 (2), 024104.CrossRefGoogle Scholar
Anna, S.L. 2016 Droplets and bubbles in microfluidic devices. Annu. Rev. Fluid Mech. 48, 285309.CrossRefGoogle Scholar
Balasubramaniam, R. & Chai, A.T. 1987 Thermocapillary migration of droplets: an exact solution for small Marangoni numbers. J. Colloid Interface Sci. 119 (2), 531538.CrossRefGoogle Scholar
Bandopadhyay, A., Mandal, S., Kishore, N.K. & Chakraborty, S. 2016 Uniform electric-field- induced lateral migration of a sedimenting drop. J. Fluid Mech. 792, 553589.CrossRefGoogle Scholar
Baroud, C.N., Gallaire, F. & Dangla, R. 2010 Dynamics of microfluidic droplets. Lab on a Chip 10 (16), 20322045.CrossRefGoogle ScholarPubMed
Baumgartner, D., Brenn, G. & Planchette, C. 2020 Effects of viscosity on liquid structures produced by in-air microfluidics. Phys. Rev. Fluids 5 (10), 103602.CrossRefGoogle Scholar
Bratukhin, Y.K. 1975 Thermocapillary drift of a droplet of viscous liquid. Fluid Dyn. 10 (5), 833837.CrossRefGoogle Scholar
Choudhuri, D. & Raja Sekhar, G.P. 2013 Thermocapillary drift on a spherical drop in a viscous fluid. Phys. Fluids 25 (4), 043104.CrossRefGoogle Scholar
Dandekar, R. & Ardekani, A.M. 2020 Effect of interfacial viscosities on droplet migration at low surfactant concentrations. J. Fluid Mech. 902, A2.CrossRefGoogle Scholar
Das, S., Mandal, S. & Chakraborty, S. 2018 Effect of temperature gradient on the cross-stream migration of a surfactant-laden droplet in Poiseuille flow. J. Fluid Mech. 835, 170216.CrossRefGoogle Scholar
Grauer, J., Schmidt, F., Pineda, J., Midtvedt, B., Löwen, H., Volpe, G. & Liebchen, B. 2021 Active droploids. Nat. Commun. 12 (1), 6005.CrossRefGoogle ScholarPubMed
Hanna, J.A. & Vlahovska, P.M. 2010 Surfactant-induced migration of a spherical drop in Stokes flow. Phys. Fluids 22 (1), 013102.CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1981 Low Reynolds Number Hydrodynamics. Springer.Google Scholar
Hetsroni, G. & Haber, S. 1970 The flow in and around a droplet or bubble submerged in an unbound arbitrary velocity field. Rheol. Acta 9 (4), 488496.CrossRefGoogle Scholar
Homsy, G.M. & Meiburg, E. 1984 The effect of surface contamination on thermocapillary flow in a two-dimensional slot. J. Fluid Mech. 139, 443459.CrossRefGoogle Scholar
Huebner, A., Sharma, S., Srisa-Art, M., Hollfelder, F., Edel, J.B. & Demello, A.J. 2008 Microdroplets: a sea of applications? Lab on a Chip 8 (8), 12441254.CrossRefGoogle ScholarPubMed
Karabelas, A.J. 1977 Vertical distribution of dilute suspensions in turbulent pipe flow. AIChE J. 23 (4), 426434.CrossRefGoogle Scholar
Kaushal, D.R. & Tomita, Y. 2002 Solids concentration profiles and pressure drop in pipeline flow of multisized particulate slurries. Intl J. Multiphase Flow 28 (10), 16971717.CrossRefGoogle Scholar
Kim, H.S. & Subramanian, R.S. 1989 Thermocapillary migration of a droplet with insoluble surfactant: I. Surfactant cap. J. Colloid Interface Sci. 127 (2), 417428.CrossRefGoogle Scholar
Lamb, H. 1924 Hydrodynamics. Cambridge University Press.Google Scholar
Leal, L.G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press.CrossRefGoogle Scholar
Link, D.R., Grasland-Mongrain, E., Duri, A., Sarrazin, F., Cheng, Z., Cristobal, G., Marquez, M. & Weitz, D.A. 2006 Electric control of droplets in microfluidic devices. Angew. Chem. Intl Ed. 45 (16), 25562560.CrossRefGoogle ScholarPubMed
Manikantan, H. & Squires, T.M. 2020 Surfactant dynamics: hidden variables controlling fluid flows. J. Fluid Mech. 892, P1.CrossRefGoogle ScholarPubMed
Marchetti, M.C. 2012 Spontaneous flows and self-propelled drops. Nature 491 (7424), 340341.CrossRefGoogle ScholarPubMed
Nallani, M. & Subramanian, R.S. 1993 Migration of methanol drops in a vertical temperature gradient in a silicone oil. J. Colloid Interface Sci. 157 (1), 2431.CrossRefGoogle Scholar
Padmavathi, B.S., Raja Sekhar, G.P. & Amaranath, T. 1998 A note on complete general solutions of Stokes equations. Q. J. Mech. Appl. Maths 51 (3), 383–388.Google Scholar
Pak, O.S., Feng, J. & Stone, H.A. 2014 Viscous Marangoni migration of a drop in a Poiseuille flow at low surface Péclet numbers. J. Fluid Mech. 753, 535552.CrossRefGoogle Scholar
Palaniappan, D., Nigam, S.D., Amaranath, T. & Usha, R. 1992 Lamb's solution of Stokes's equations: a sphere theorem. Q. J. Mech. Appl. Maths 45 (1), 4756.CrossRefGoogle Scholar
Panigrahi, D.P., Santra, S., Banuprasad, T.N., Das, S. & Chakraborty, S. 2021 Interfacial viscosity-induced suppression of lateral migration of a surfactant laden droplet in a nonisothermal Poiseuille flow. Phys. Rev. Fluids 6 (5), 053603.CrossRefGoogle Scholar
Raja Sekhar, G.P., Rao, K.T., Padmavathi, B.S. & Amaranath, T. 1995 Two dimensional Stokes flows with slip–stick boundary conditions. Mech. Res. Commun. 22 (5), 491501.CrossRefGoogle Scholar
Rajabi, M., Baza, H., Turiv, T. & Lavrentovich, O.D. 2021 Directional self-locomotion of active droplets enabled by nematic environment. Nat. Phys. 17 (2), 260266.CrossRefGoogle Scholar
Ramos, G., Cordero, M.L. & Soto, R. 2020 Bacteria driving droplets. Soft Matt. 16 (5), 13591365.CrossRefGoogle ScholarPubMed
Rednikov, A.E. & Ryazantsev, Y.S. 1989 On the thermocapillary motion of a drop with homogeneous internal heat evolution. J. Appl. Maths Mech. 53 (2), 212216.CrossRefGoogle Scholar
Rothbaum, H.P. & Stone, H.M. 1961 Heat output of Escherichia coli. J. Bacteriol. 81 (2), 172177.CrossRefGoogle ScholarPubMed
Sadhal, S.S. & Johnson, R.E. 1983 Stokes flow past bubbles and drops partially coated with thin films. Part 1. Stagnant cap of surfactant film – exact solution. J. Fluid Mech. 126, 237250.CrossRefGoogle Scholar
Sadhal, S.S. & Johnson, R.E. 1986 On the deformation of drops and bubbles with varying interfacial tension. Chem. Engng Commun. 46 (1–3), 97109.CrossRefGoogle Scholar
Schwalbe, J.T., Phelan, J., Frederick, R., Vlahovska, P.M. & Hudson, S.D. 2011 Interfacial effects on droplet dynamics in Poiseuille flow. Soft Matt. 7 (17), 77977804.CrossRefGoogle Scholar
Seemann, R., Brinkmann, M., Pfohl, T. & Herminghaus, S. 2011 Droplet based microfluidics. Rep. Prog. Phys. 75 (1), 016601.CrossRefGoogle ScholarPubMed
Shankar, S., Raju, V. & Mahadevan, L. 2022 Optimal transport and control of active drops. Proc. Natl Acad. Sci. 119 (35), e2121985119.CrossRefGoogle ScholarPubMed
Sharanya, V. & Raja Sekhar, G.P. 2015 Thermocapillary migration of a spherical drop in an arbitrary transient Stokes flow. Phys. Fluids 27 (6), 063104.CrossRefGoogle Scholar
Sharanya, V., Raja Sekhar, G.P. & Rohde, C. 2019 Surfactant-induced migration of a spherical droplet in non-isothermal Stokes flow. Phys. Fluids 31 (1), 012110.CrossRefGoogle Scholar
Sneddon, I.N. 2006 Elements of Partial Differential Equations. Dover.Google Scholar
Stan, C.A., Guglielmini, L., Ellerbee, A.K., Caviezel, D., Stone, H.A. & Whitesides, G.M. 2011 Sheathless hydrodynamic positioning of buoyant drops and bubbles inside microchannels. Phys. Rev. E 84 (3), 036302.CrossRefGoogle ScholarPubMed
Stone, H.A. 1990 A simple derivation of the time-dependent convective–diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A 2 (1), 111112.CrossRefGoogle Scholar
Stone, H.A. & Leal, L.G. 1990 The effects of surfactants on drop deformation and breakup. J. Fluid Mech. 220, 161186.CrossRefGoogle Scholar
Stone, H.A. & Masoud, H. 2015 Mobility of membrane-trapped particles. J. Fluid Mech. 781, 494505.CrossRefGoogle Scholar
Stone, H.A., Stroock, A.D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381411.CrossRefGoogle Scholar
Subramanian, R.S. 1983 Thermocapillary migration of bubbles and droplets. Adv. Space Res. 3 (5), 145153.CrossRefGoogle Scholar
Subramanian, R.S. & Balasubramaniam, R. 2001 Motion of Bubbles and Drops in Reduced Gravity. Cambridge University Press.Google Scholar
Teh, S.Y., Lin, R., Hung, L.H. & Lee, A.P. 2008 Droplet microfluidics. Lab on a Chip 8 (2), 198220.CrossRefGoogle ScholarPubMed
Thompson, R.L., DeWitt, K.J. & Labus, T.L. 1980 Marangoni bubble motion phenomenon in zero gravity. Chem. Engng Commun. 5 (5–6), 299314.CrossRefGoogle Scholar
Young, N.O., Goldstein, J.S. & Block, M. 1959 The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6 (3), 350356.CrossRefGoogle Scholar
Zhu, Y. & Fang, Q. 2013 Analytical detection techniques for droplet microfluidics – a review. Anal. Chim. Acta 787, 2435.CrossRefGoogle ScholarPubMed