Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T11:24:19.197Z Has data issue: false hasContentIssue false

Thermal transfer in Rayleigh–Bénard cell with smooth or rough boundaries

Published online by Cambridge University Press:  28 December 2017

E. Rusaouën*
Affiliation:
Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
O. Liot
Affiliation:
Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
B. Castaing
Affiliation:
Univ. Grenoble Alpes, CNRS, Grenoble INP, LEGI, F-38000 Grenoble, France
J. Salort
Affiliation:
Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
F. Chillà
Affiliation:
Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
*
Present address: Univ. Grenoble Alpes, CNRS, Grenoble INP, LEGI, F-38000 Grenoble, France. Email address for correspondence: [email protected]

Abstract

Several Rayleigh–Bénard experiments in water are performed with smooth or rough boundaries. We present new thermal transfer measurements obtained with large roughness elements arranged in a square lattice. The data are compared to previous data obtained with smaller elements in the same cell (Tisserand et al., Phys. Fluids, vol. 23, 2011). Experiments in the same apparatus without roughness are presented, as reference results, to allow for comparison. In the rough case, several regimes of heat transfer are identified: one similar to the smooth case, an enhanced heat transfer regime characterized by a modification of the Nusselt versus Rayleigh number relation and a third part where the relation can be similar to a smooth one with a corrected prefactor.

Type
JFM Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: LAAS-CNRS, 7 avenue du Colonel Roche, BP54200 31031 Toulouse CEDEX 4, France.

References

Ahlers, G. 2000 Effect of sidewall conductance on heat-transport measurements for turbulent Rayleigh–Bénard convection. Phys. Rev. E 63, 015303.Google Scholar
Ahlers, G., Brown, E., Araujo, F., Funfschilling, D., Grossmann, S. & Lohse, D. 2006 Non-Oberbeck–Boussinesq effects in strongly turbulent Rayleigh–Bénard convection. J. Fluid Mech. 569, 409445.10.1017/S0022112006002916Google Scholar
Chavanne, X., Chillà, F., Castaing, B., Hébral, B., Chabaud, B. & Chaussy, J. 1997 Observation of the ultimate regime in Rayleigh–Bénard convection. Phys. Rev. Lett. 79, 36483651.10.1103/PhysRevLett.79.3648Google Scholar
Chavanne, X., Chillà, F., Chabaud, B., Castaing, B. & Hébral, B. 2001 Turbulent Rayleigh–Bénard convection in gaseous and liquid He. Phys. Fluids 13, 13001320.10.1063/1.1355683Google Scholar
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35, 58.Google Scholar
Ciliberto, S. & Laroche, C. 1999 Random roughness of boundary increases the turbulent convection scaling exponent. Phys. Rev. Lett. 82, 39984001.10.1103/PhysRevLett.82.3998Google Scholar
Du, Y.-B. & Tong, P. 1998 Enhanced heat transport in turbulent convection over rough surface. Phys. Rev. Lett. 81, 987990.10.1103/PhysRevLett.81.987Google Scholar
Du, Y.-B. & Tong, P. 2000 Turbulent thermal convection in a cell with ordered rough boundaries. J. Fluid Mech. 407, 5784.10.1017/S0022112099007624Google Scholar
García, A., Solano, J. P., Vicente, P. G. & Viedma, A. 2012 The influence of artificial roughness shape on heat transfer enhancement: corrugated tubes, dimpled tubes and wire coils. Appl. Therm. Engng 35, 196201.10.1016/j.applthermaleng.2011.10.030Google Scholar
Goluskin, D. & Doering, C. R. 2016 Bounds for convection between rough boundaries. J. Fluid Mech. 804, 370386.10.1017/jfm.2016.528Google Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.10.1017/S0022112099007545Google Scholar
Grossmann, S. & Lohse, D. 2011 Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids 23, 045108.10.1063/1.3582362Google Scholar
He, X., Funfschilling, D., Nobach, H., Bodenschatz, E. & Ahlers, G. 2012 Transition to the ultimate state of turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 108, 024502.10.1103/PhysRevLett.108.024502Google Scholar
Kraichnan, R. H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5 (11), 13741389.10.1063/1.1706533Google Scholar
Liot, O., Ehlinger, Q., Rusaouen, E., Coudarchet, T., Salort, J. & Chillà, F. 2017 Velocity fluctuations and boundary layer structure in a rough Rayleigh–Bénard cell filled with water. Phys. Rev. Fluids 2, 044605.10.1103/PhysRevFluids.2.044605Google Scholar
Liot, O., Salort, J., Kaiser, R., du Puits, R. & Chillà, F. 2016 Boundary layer structure in a rough Rayleigh–Bénard cell filled with air. J. Fluid Mech. 786, 275293.10.1017/jfm.2015.649Google Scholar
Malkus, W. V. R. 1954 The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A 225, 196212.Google Scholar
Niemela, J. J., Skrbek, L., Sreenivasan, K. R. & Donnelly, R. J. 2000 Turbulent convection at very high Rayleigh numbers. Nature 404, 837.10.1038/35009036Google Scholar
Perry, E., Schofield, W. H. & Joubert, P. N. 1969 Rough wall turbulent boundary layers. J. Fluid Mech. 37, 383413.Google Scholar
Qiu, X.-L., Xia, K.-Q. & Tong, P. 2005 Experimental study of velocity boundary layer near a rough conducting surface in turbulent natural convection. J. Turbul. 6, N30.10.1080/14685240500460733Google Scholar
Roche, P.-E., Castaing, B., Chabaud, B. & Hébral, B. 2001a Observation of the 1/2 power law in Rayleigh–Bénard convection. Phys. Rev. E 63, 045303.Google Scholar
Roche, P.-E., Castaing, B., Chabaud, B., Hébral, B. & Sommeria, J. 2001b Side wall effects in Rayleigh–Bénard experiments. Eur. Phys. J. B 24, 405.10.1007/s10051-001-8690-5Google Scholar
Roche, P.-E., Gauthier, F., Kaiser, R. & Salort, J. 2010 On the triggering of the ultimate regime of convection. New J. Phys. 12, 085014.10.1088/1367-2630/12/8/085014Google Scholar
Salort, J., Liot, O., Rusaouen, E., Seychelles, F., Tisserand, J.-C., Creyssels, M., Castaing, B. & Chillà, F. 2014 Thermal boundary layer near roughnesses in turbulent Rayleigh–Bénard convection: flow structure and multistability. Phys. Fluids 26, 015112.10.1063/1.4862487Google Scholar
Shishkina, O., Weiss, S. & Bodenschatz, E. 2016 Conductive heat flux in measurements of the nusselt number in turbulent Rayleigh–Bénard convection. Phys. Rev. Fluids 1, 062301.10.1103/PhysRevFluids.1.062301Google Scholar
Skrbek, L. & Urban, P. 2015 Has the ultimate state of turbulent thermal convection been observed? J. Fluid Mech. 785, 270282.10.1017/jfm.2015.638Google Scholar
Stevens, R. J. A. M., van der Poel, E. P., Grossmann, S. & Lohse, D. 2013 The unifying theory of scaling in thermal convection: the updated prefactors. J. Fluid Mech. 730, 295308.Google Scholar
Tisserand, J.-C., Creyssels, M., Gasteuil, Y., Pabiou, H., Gibert, M., Castaing, B. & Chillà, F. 2011 Comparison between rough and smooth plates within the same Rayleigh–Bénard cell. Phys. Fluids 23, 015105.10.1063/1.3540665Google Scholar
Toppaladoddi, S., Succi, S. & Wettlaufer, J. S. 2017 Roughness as a route to the ultimate regime of thermal convection. Phys. Rev. Lett. 118, 074503.10.1103/PhysRevLett.118.074503Google Scholar
Urban, P., Musilova, V. & Skrbek, L. 2011 Efficiency of heat transfer in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 107, 014302.10.1103/PhysRevLett.107.014302Google Scholar
Wei, P., Chan, T.-S., Ni, R., Zhao, X.-Z. & Xia, K.-Q. 2014 Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection. J. Fluid Mech. 740, 2846.10.1017/jfm.2013.638Google Scholar
Wu, X.-Z. & Libchaber, A. 1991 Non-Boussinesq effects in free thermal convection. Phys. Rev. A 43, 28332839.10.1103/PhysRevA.43.2833Google Scholar
Xie, Y.-C. & Xia, K.-Q. 2017 Turbulent thermal convection over rough plates with varying roughness geometries. J. Fluid Mech. 825, 573599.10.1017/jfm.2017.397Google Scholar
Zhu, X., Stevens, R. J. A. M., Verzicco, R. & Lohse, D. 2017 Roughness-facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection. Phys. Rev. Lett. 119, 154501.10.1103/PhysRevLett.119.154501Google Scholar