Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T21:56:02.303Z Has data issue: false hasContentIssue false

Thermal levitation

Published online by Cambridge University Press:  10 July 2008

F. MANDUJANO
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Apdo. Postal 34, 62580 Temixco, Mor., Mexico
R. RECHTMAN*
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Apdo. Postal 34, 62580 Temixco, Mor., Mexico
*
Author to whom correspondence should be addressed: [email protected]

Abstract

A particle with a density slightly larger than that of the fluid in which it is immersed will sediment. However, if the particle's temperature is higher than that of the fluid, the terminal velocity of sedimentation will be smaller and can even change sign. When the terminal velocity is zero we say there is thermal levitation. Thermal levitation can also occur when the density and temperature of the particle are smaller than those of the fluid. Using a two-component thermal lattice Boltzmann equation method, we study this phenomenon and show it can be stable or unstable.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aidun, C. & Lu, Y. 1995 Lattice-Boltzmann simulation of solid particles suspended in fluid. J. Statist. Phys. 81, 4961.CrossRefGoogle Scholar
Aidun, C., Lu, Y. & Ding, E. 1998 Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287311.CrossRefGoogle Scholar
Bérge, P., Pomeau, Y. & Vidal, C. 1988 L'Ordre Dans le Chaos. Hermann.Google Scholar
Desrayaud, G. & Lauriat, G. 1993 Unsteady confined buoyant plumes. J. Fluid Mech. 257, 617646.CrossRefGoogle Scholar
Feng, J., Hu, H. H. & Joseph, D. D. 1994 Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 1. Sedimentation. J. Fluid Mech. 261, 95134.CrossRefGoogle Scholar
Gan, H., Chang, J., Feng, J. & Hu, H. 2003 Direct numerical simulation of the sedimentation of solid particles with thermal convection. J. Fluid Mech. 481, 385411.CrossRefGoogle Scholar
Guo, Z. & Zheng, C. 2002 An extrapolation method for boundary conditions in lattice Boltzmann method. Phys. Fluids 14 (6), 20072010.CrossRefGoogle Scholar
Hu, H. H., Fortes, A. F. & Joseph, D. D. 1992 a Experiments and direct simulation of fluid particle motion. Video J. Engng Res. 2, 1724.Google Scholar
Hu, H. H., Joseph, D. D. & Crochet, M. J. 1992 b Direct simulation of fluid particle motion. Theoret. Comput. Fluid Dyn. 3, 285306.CrossRefGoogle Scholar
Huang, H., Lee, T. S. & Shu, C. 2006 Thermal curved boundary treatment for the thermal lattice Boltzmann equation. Intl J. Mod. Phys. C 17 (5), 631643.CrossRefGoogle Scholar
Inamuro, T., Yoshino, M. M., Inoue, H., Mizuno, R. & Ogino, F. 2002 A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem. J. Comput. Phys. 179, 201215.CrossRefGoogle Scholar
Ladd, A. J. C. 1994 Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285309.CrossRefGoogle Scholar
Mei, R., Yu, D., Shyy, W. & Luo, L. 2002 Force evaluation in the lattice Boltzmann method involving curved geometry. Phys. Rev. E 64, 041203.Google Scholar
Ottino, J. M. 1989 The Kinematics of Mixing: Stretching, Chaos and Transport. Cambridge University Press.Google Scholar
Qian, Y., d'Humieres, D. & Lallemand, P. 1992 Lattice BGK models for the Navier–Stokes equation. Eur. Phys. Lett. 17, 479484.CrossRefGoogle Scholar
Sadat, H. & Couturier, S. 2000 Performance and accuracy of a meshless method for laminar natural convection. Numer. Heat Transfer B 37, 455467.Google Scholar
Shan, X. 1997 Simulation of Rayleigh–Bénard convection using a lattice Boltzmann method. Phys. Rev. E 55 (3), 27802788.Google Scholar
Shu, C. & Zhu, Y. D. 2002 Efficient computation of natural convection in a concentric annulus between an outer square cylinder and an inner circular cylinder. Intl J. Numer. Meth. Fluids 38, 429445.CrossRefGoogle Scholar
Yu, Z., Shao, X. & Wachs, A. 2006 A fictitious domain method for particulate flows with heat transfer. J. Comput. Phys. 217 424452.CrossRefGoogle Scholar