Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-05T04:18:32.479Z Has data issue: false hasContentIssue false

Theory of Mach reflection of detonation at glancing incidence

Published online by Cambridge University Press:  06 December 2016

John B. Bdzil*
Affiliation:
Shock and Detonation Physics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Mark Short
Affiliation:
Shock and Detonation Physics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
*
Email address for correspondence: [email protected]

Abstract

We present a theory for Mach reflection of a detonation undergoing glancing incidence reflection off of a rigid wall. Our focus is on condensed-phase explosives, which we describe with a constant adiabatic gamma equation of state and an irreversible and either state-independent or weakly state-dependent reaction rate. We consider two detonation models: (1) the instantaneous reaction heat-release Chapman–Jouguet (CJ) limit and (2) the spatially resolved reaction heat-release Zeldovich–von Neumann–Dø̈ring (ZND) limit, where here we only consider that a small fraction of the detonation energy release is spatially resolved (the SRHR limit). We observe a three-shock reflection in the CJ limit case, with a Mach shock that is curved. We develop an analytical expression for the triple-point track angle as a function of the angle of incidence. For the SRHR model, we observe a smooth lead shock, akin to von Neumann reflection, with no reflected shock in the reaction zone. Only at larger angles of incidence is a three-shock Mach reflection observed.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aslam, T. D., Bdzil, J. B. & Stewart, D. S. 1996 Level set methods applied to modelling detonation shock dynamics. J. Comput. Phys. 126, 390409.CrossRefGoogle Scholar
Ballhaus, W. F. & Lomax, H. 1975 The numerical simulation of low frequency unsteady transonic flow fields. In Fourth International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, vol. 35, pp. 5763. Springer.Google Scholar
Bdzil, J. B. 1981 Steady-state two-dimensional detonation. J. Fluid Mech. 108, 195226.CrossRefGoogle Scholar
Bdzil, J. B., Short, M. & Quirk, J. J. 2015 Oblique interaction of detonation with inert material confinement: the effect on the reaction zone. In Proceedings 15th Symposium (International) on Detonation, ONR pub. 43-280-15, White Oak, MD, 2015 (ed. Carney, J. & Maienschein, J.), pp. 426436. ONR & US Naval Ordnance Laboratory.Google Scholar
Bdzil, J. B. & Stewart, D. S. 1986 Two-dimensional time-dependent detonation. J. Fluid Mech. 171, 126.Google Scholar
Bdzil, J. B. & Stewart, D. S. 2012 Detonation Dynamics (ed. Zhang, F.), Shock Wave Science and Technology Reference Library, vol. 6, pp. 373453. Springer.Google Scholar
Brio, M. & Hunter, J. K. 1992 Mach reflection for the two-dimensional Burgers equation. Physica D 60, 194207.Google Scholar
Cole, J. D. 1968 Perturbation Methods in Applied Mathematics, p. 222. Ginn-Blaisdell.Google Scholar
Colella, P. & Henderson, L. F. 1990 The von Neumann paradox for the diffraction of weak shock waves. J. Fluid Mech. 213, 7194.CrossRefGoogle Scholar
Engquist, B. & Majda, A. 1981 Numerical radiation boundary conditions for unsteady transonic flow. J. Comput. Phys. 40, 91103.Google Scholar
Engquist, B. & Osher, S. 1980 Stable and entropy satisfying approximations for transonic flow calculations. Maths Comput. 34 (149), 4575.Google Scholar
Faria, L. M., Kasimov, A. R. & Rosales, R. R. 2015 Theory of weakly nonlinear self sustained detonations. J. Fluid Mech. 784, 163198.CrossRefGoogle Scholar
Fickett, W. 1985 Introduction to Detonation Theory. UC Press.CrossRefGoogle Scholar
Fickett, W. & Davis, W. C. 1979 Detonation: Theory and Experiment. Dover.Google Scholar
Fowles, G. R. & Isbell, W. M. 1965 Method for Hugoniot equation-of-state measurements at extreme pressures. J. Appl. Phys. 36, 13771379.Google Scholar
Gamba, I. M., Rosales, R. R. & Tabak, E. G. 1999 Constraints on possible singularities for the unsteady transonic small disturbance (UTSD) equations. Commun. Pure Appl. Maths 52, 763779.3.0.CO;2-3>CrossRefGoogle Scholar
Horning, H. 1986 Regular and Mach reflection of shock waves. Annu. Rev. Fluid Mech. 18, 3358.CrossRefGoogle Scholar
Hunter, J. K. & Brio, M. 2000 Weak shock reflection. J. Fluid Mech. 410, 235261.CrossRefGoogle Scholar
Hunter, J. K. & Tesdall, A. M. 2012 On the self-similar diffraction of a weak shock into an expansion wavefront. SIAM J. Appl. Maths 72 (1), 124143.CrossRefGoogle Scholar
Kevorkian, J. & Cole, J. D. 1981 Perturbation Methods in Applied Mathematics, Applied Mathematical Sciences, vol. 34, p. 525. Springer.CrossRefGoogle Scholar
Lambourn, B. D. & Wright, P. W. 1965 Mach interaction of two plane detonation waves. In Proceedings 4th Symposium (International) on Detonation, ACR-126, White Oak, MD, 1966 (ed. Jacobs, S. J.), pp. 142152. ONR & US Naval Ordnance Laboratory.Google Scholar
Law, C. K.1970 Diffraction of strong shock waves by a sharp compressive corner. UTIAS Tech. Note No. 150, The University of Toronto.Google Scholar
Meltzer, J., Shepherd, J. E., Akbar, R. & Sabet, A. 1993 Mach reflection of detonation waves. Prog. Astronaut. Aeronaut. 153, 7894.Google Scholar
Murman, E. M. & Cole, J. D. 1971 Calculation of plane steady transonic flows. AIAA J. 9 (1), 114121.CrossRefGoogle Scholar
Ong, S. B.1955 On the interaction of a Chapman–Jouguet detonation wave with a wedge. PhD thesis, The University of Michigan.Google Scholar
Osher, S. & Sethian, J. A. 1988 Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 1249.CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 1997 Numerical Recipes in Fortran 77, Fortran Numerical Recipes, vol. 1, p. 42. University of Cambridge.Google Scholar
Shepherd, J. E., Schultz, E. & Akbar, R. 1999 Detonation diffraction. In Proceedings of 22nd International Symposium on Shock Waves (ed. Ball, G. J., Hillier, R. & Roberts, G. T.), University of Southampton, ISBN: 0854327118, 9780854327119.Google Scholar
Short, M., Anguelova, I. I., Aslam, T. D., Bdzil, J. B., Henrick, A. K. & Sharpe, G. J. 2008 Stability of detonations for an idealized condensed-phase model. J. Fluid Mech. 595, 4582.CrossRefGoogle Scholar
Sternberg, H. M. & Piacesi, D. 1966 Interaction of oblique detonation waves with iron. Phys. Fluids 9 (7), 13071315.CrossRefGoogle Scholar
Tabak, E. G. & Rosales, R. R. 1994 Focusing of weak shock waves and the von Neumann paradox of oblique shock reflection. Phys. Fluids 6 (5), 18741892.Google Scholar
Wescott, B. L., Stewart, D. S. & Bdzil, J. B. 2004 On self-similarity of detonation diffraction. Phys. Fluids 16 (2), 373384.Google Scholar