Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T05:55:22.407Z Has data issue: false hasContentIssue false

Theory and computations for breakup of unsteady subsonic or supersonic separating flows

Published online by Cambridge University Press:  26 April 2006

I. P. Vickers
Affiliation:
Mathematics Department, University College London, Gower Street, London WC1E 6BT, UK
F. T. Smith
Affiliation:
Mathematics Department, University College London, Gower Street, London WC1E 6BT, UK

Abstract

This study of flow just beyond a breakaway-separation point presents a description of planar nonlinear unsteady effects over a fairly wide parameter range, for a subsonic or supersonic boundary layer at large Reynolds numbers. The inviscid model thus produced essentially contains a vortex sheet near the smooth solid surface, with local inner–outer interaction. The governing equations couple the eddy velocity and pressure with the thicknesses of the detached boundary layer and the eddy. The computational method presented here uses a new adaptive gridding technique intended to capture accurately the spiky solution behaviour that develops and to compare with theory. Analysis and computations point to a breakup in the solution, suggesting an explanation for the start of transition and possible turbulent reattachment as found experimentally. The influence of the detached boundary-layer thickness proves crucial. The type of finite-time breakup encountered is studied analytically and the criterion for its occurrence is highlighted. This is guided by a characteristic analysis for a special case. The finite-time breakup is similar in spirit to, although different in detail from, a nonlinear breakup proposed earlier by one of the authors for general unsteady interactive boundary layers and it suggests a wide application of that nonlinear breakup theory and its criterion. Comparisons between computations and theory are found to be supportive.

Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brotherton-Ratcliffe, R. V. & Smith, F. T. 1987 Complete breakdown of an unsteady interactive boundary layer (over a surface distortion or in a liquid layer). Mathematika 34, 86.Google Scholar
Brown, S. N., Cheng, H. K. & Smith, F. T. 1988 Nonlinear instability and break-up of separated flow. J. Fluid Mech. 193, 191.Google Scholar
Bursnall, W. J. & Loftin, L. K. 1951 NASA TN 2338.
Catherall, D. 1991 Roy. Aero. Estab. Tech. Rept. 91021.
Conlisk, A. T., Burggraf, O. R. & Smith, F. T. 1987 Nonlinear neutral modes in the Blasius boundary layer. Forum on Unsteady Separation. ASME, FED vol. 52, p. 119.
Dovgal, A. V., Kozlov, V. V. & Simonov, O. A. 1987 In Boundary-Layer Separation (ed. F. T. Smith & S. N. Brown). Springer.
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.
Duck, P. W. 1985 Laminar flow over unsteady humps: the formation of waves. J. Fluid Mech. 160, 465.Google Scholar
Eiseman, P. R. 1987 Adaptive grid generation. Comput. Methods Appl. Mech. Engng 64, 321.Google Scholar
Fiddes, S. P. 1980 A theory of the separated flow past a slender elliptic cone at incidence. AGARD Paper 30.
Gaster, M. 1966 AGARD Conf. Proc. 4, 819 (Also Aeronaut. Res. Counc. Rep. & Mem. 3595, 1969).
Gault, D. E. 1955 NASA TN 3505.
Hall, P. 1982 On the nonlinear evolution of Görtler vortices in growing boundary layers. J. Inst. Maths. Applics. 29, 173.Google Scholar
Hawken, D. F., Hansen, J. S. & Gottlieb, J. J. 1991 A new finite-difference solution-adaptive method. Phil. Trans. R. Soc. Lond. A 341, 373.Google Scholar
Hoyle, J. M. & Smith, F. T. 1994 On finite time break up in 3D unsteady interacting boundary layers. Proc. R. Soc. Lond. A (to appear).Google Scholar
Hoyle, J. M., Smith, F. T. & Walker, J. D. A. 1991 On sublayer eruption and vortex formation. Comput. Phys. Commun. 65, 151.Google Scholar
Kachanov, Y. S., Ryzhov, O. S. & Smith, F. T. 1993 Formation of solitons in transitional boundary layers: theory and experiment. J. Fluid Mech. 251, 273.Google Scholar
Korolev, G. L. 1980 Numerical solution of asymptotic problem on separating laminar boundary layer at a smooth surface. Sci. J. TSAGI 11 (2), 27.Google Scholar
Kozlov, V. V. 1987 In Boundary-Layer Separation (ed. F. T. Smith & S. N. Brown). Springer.
Mehta, U. B. 1977 Unsteady aerodynamics. In AGARD Conf. Proc. 227, Paper 23.
Messiter, A. F. 1983 Trans. ASME. E: J. Appl. Mech. 50, 1104.
Mezaris, T. B., Telionis, D. P., Barbi, C. & Jones, G. S. 1987 Separation and wake of pulsating laminar flow. Phil. Trans. R. Soc. Lond. A 322, 493.Google Scholar
Moore, D. W. 1979 The spontaneous appearance of a singularity in the shape of an evolving vortex sheet. Proc. R. Soc. Lond. A 365, 105.Google Scholar
Mueller, T. J. 1984 AIAA Aerospace Paper 84-1617.
Mueller, T. J. & Batill, S. M. 1980 AIAA Aerospace Paper 80-1440.
Peridier, V. J., Smith, F. T. & Walker, J. D. A. 1991a Vortex-induced boundary-layer separation. Part 1. The unsteady limit problem Re → ∞. J. Fluid Mech. 232, 99.Google Scholar
Peridier, V. J., Smith, F. T. & Walker, J. D. A. 1991b Vortex-induced boundary-layer separation. Part 2. Unsteady interacting boundary-layer theory. J. Fluid Mech. 232, 133.Google Scholar
Saffman, P. G. & Schatzman, J. C. 1982a Stability of a vortex street of finite vortices. J. Fluid Mech. 117, 171.Google Scholar
Saffman, P. G. & Schatzman, J. C. 1982b An inviscid model for the vortex-street wake. J. Fluid Mech. 122, 467.Google Scholar
Smith, F. T. 1977 The laminar separation of an incompressible fluid streaming past a smooth surface. Proc. R. Soc. Lond. A 356, 443.Google Scholar
Smith, F. T. 1979 On the non-parallel flow stability of the Blasius boundary layer. Proc. R. Soc. Lond. A 366, 91.Google Scholar
Smith, F. T. 1982 On the high Reynolds number theory of laminar flows. IMA J. Appl. Maths 28, 207.Google Scholar
Smith, F. T. 1984 Theoretical aspects of the steady and unsteady laminar separation. AIAA Paper 84-1582.
Smith, F. T. 1986a Two-dimensional disturbance travel, growth and spreading in boundary layers. J. Fluid Mech. 169, 353.Google Scholar
Smith, F. T. 1986b Steady and unsteady boundary-layer separation. Ann. Rev. Fluid Mech. 18, 197.Google Scholar
Smith, F. T. 1987 Nonlinear effects and non-parallel flows; the collapse of separating motion. In Stability of Time-Dependent and Spatially Varying Flows (ed. D. L. Dwoyer & M. Y. Hussaini). Springer. (Also Utd Tech. Res. Cent., E. Hartford, CT, Tech. Rep. UT85-55.)
Smith, F. T. 1988 Finite-time break-up can occur in any unsteady interacting boundary layer. Mathematika 35, 256.Google Scholar
Smith, F. T. 1993 Theoretical aspects of transition and turbulence, AIAA J. 31, 22202226.Google Scholar
Smith, F. T. & Bodonyi, R. J. 1985 On short-scale inviscid instabilities in flow past surface-mounted obstacles and other nonparallel motions. Aeronaut. J. R. Aeron. Soc., June-July.Google Scholar
Smith, F. T. & Bowles, R. I. 1992 Transition theory and experimental comparisons on (I) amplification into streets and (II) a strongly nonlinear break-up criterion. Proc. R. Soc. Lond. A 439, 163.Google Scholar
Smith, F. T. & Burggraf, O. R. 1985 On the development of large-sized short-scaled disturbances in boundary layers. Proc. R. Soc. Lond. A 399, 25.Google Scholar
Smith, F. T., Doorly, D. J. & Rothmayer, A. P. 1990 On displacement-thickness, wall-layer and mid-flow scales in turbulent boundary layers, and slugs of vorticity in channel and pipe flows. Proc. R. Soc. Lond. A 428, 255.Google Scholar
Smith, F. T. & Elliott, J. W. 1985 On the abrupt turbulent reattachment downstream of leadingedge laminar separation. Proc. R. Soc. Lond. A 401, 1.Google Scholar
Smith, F. T. & Stewart, P. A. 1987a The resonant-triad nonlinear interaction in boundary-layer transition. J. Fluid Mech. 179, 227.Google Scholar
Smith, F. T. & Stewart, P. A. 1987b Three-dimensional instabilities in steady and unsteady non-parallel boundary layers, including effects of Tollmien–Schlichting disturbances and cross-flow. Proc. R. Soc. Lond. A 409, 229.Google Scholar
Stewart, P. A. & Smith, F. T. 1992 Three-dimensional nonlinear blow-up from a nearly planar initial disturbance, in boundary-layer transition: theory and experimental comparisons. J. Fluid Mech. 244, 79.Google Scholar
Stewartson, K. 1981 D’Alembert's Paradox. SIAM Rev. 23, 308.Google Scholar
Stewartson, K. & Williams, P. G. 1969 Self-induced separation. Proc. R. Soc. Lond. A 312, 181.Google Scholar
Stewartson, K. & Williams, P. G. 1973 Self-induced separation II. Mathematika 20, 98.Google Scholar
Sychev, V. V. 1972 On laminar separation. Izv. Akad. Nauk SSR, Mekh. Zhidk. Gaza 3, 47.Google Scholar
Sychev, V. V. 1982 Asymptotic theory of separation flows. Fluid. Dyn. 17, 179.Google Scholar
Tani, I. 1964 Proc. Aeronaut. Sci. 5, 70.
Tutty, O. R. & Cowley, S. J. 1987 On the stability and the numerical solution of the unsteady interactive boundary layer equation. J. Fluid Mech. 168, 431.Google Scholar
Van Dyke, M. D. 1982 An Album of Fluid Motion. Stanford: Parabolic Press.
Vatsa, V. N. & Carter, J. E. 1983 AIAA Aerospace Paper 83-0300.
Vickers, I. P. 1993 Nonlinear effects in two-dimensional separating-flow transition. PhD thesis, University of London.
Young, W. H. 1982 In Numerical and Physical Aspects of Aerodynamic Flows (ed. T. Cebeci). Springer.
Zhuk, V. I. & Ryzhov, O. S. 1980 Free interaction and boundary layer stability in incompressible fluid. Soc. Phys. Dokl. 25 (8), 577579.Google Scholar
Zhuk, V. I. & Ryzhov, O. S. 1982 On locally inviscid disturbances in a boundary layer with self-induced pressure. Sov. Phys. Dokl. 27 (3), 177179.Google Scholar