Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T11:26:07.604Z Has data issue: false hasContentIssue false

Theoretical pressure–strain term, experimental comparison, and resistance to large anisotropy

Published online by Cambridge University Press:  20 April 2006

J. Weinstock
Affiliation:
Aeronomy Laboratory, National Oceanic and Atmospheric Administration Boulder, Colorado 80303
Stephen Burk
Affiliation:
Naval Environmental Prediction Research Facility, Monterey, CA 93943

Abstract

Although models of the pressure–strain term explain many features of nearly uniform homogeneous shear flows, a discrepancy remains (Leslie 1980). It is suggested that the discrepancy is caused by use of an empirical expression for the fluctuation part of the pressure–strain term, the part usually denoted by ϕij,1. The discrepancy is eliminated by replacement of the empirical ϕij,1 with a recent theoretical expression. Relatedly, the Launder, Reece & Rodi (1975) model for the mean-field part ϕij,2 is shown to be a good approximation for both a strongly and weakly sheared flow. This model of ϕij,2 when combined with the theoretical ϕij,1 is found to provide an explanation for experiments of both Champagne, Harris & Corrsin (1970) and Harris, Graham & Corrsin (1977). Full correction requires that deviations from local isotropy be accounted for. Special emphasis is given to a theoretical demonstration that the pressure–strain term does not cause a retun to isotropy but, rather, it resists large anisotropy – a weaker effect.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bradshaw, P. 1967 J. Fluid. Mech. 29, 625645.
Cambon, C., Jaendel, D. & Mathieu, J. 1981 J. Fluid Mech. 104, 247262.
Champagne, F. H., Harris, V. C. & Corrsin, S. 1970 J. Fluid Mech. 44, 81139.
Crow, S. C. 1968 J. Fluid Mech. 33, 120.
Feiereisen, W. J., Reynolds, W. C. & Ferziger, J. H. 1981 Stanford Univ. Dept Mech. Engng Rep. TF-13.
Gibson, M. M. & Launder, B. E. 1978 J. Fluid Mech. 86, 491511.
Hanjalić, K. & Launder, B. E. 1972 J. Fluid Mech. 51, 301.
Harris, V. C., Graham, J. A. H. & Corrsin, S. 1977 J. Fluid Mech. 81, 657687.
Kaimal, J. C., Wyngaard, J. C., Izumi, Y. & Coté, O. R. 1972 Q. J. R. Met. Soc. 98, 563589.
Launder, B. E., Reece, G. J. & Rodi, W. 1975 J. Fluid Mech. 68, 537566.
Leslie, D. C. 1980 J. Fluid Mech. 98, 435448.
Lumley, J. L. 1978 Adv. Appl. Mech. 18, 123176.
Lumley, J. L. & Newman, G. R. 1977 J. Fluid Mech. 82, 161178.
Mellor, G. L. 1973 J. Atmos. Sci. 30, 10611069.
Mellor, G. L. & Yamada, T. 1982 Rev. Geophys. Space Phys. 20, 851857.
Meroney, R. M. 1976 Comp. Fluids 4, 93107.
Mulhearn, P. J. & Luxton, R. E. 1975 J. Fluid Mech. 68, 577590.
Naot, D., Shavit, A. & Wolfshtein, W. 1973 Phys. Fluids 16, 738743.
Rodi, W. 1976 Z. angew. Math. Mech. 56, 219221.
Rotta, J. 1951 Z. Phys. 129, 547572.
Weinstock, J. 1981 J. Fluid Mech. 105, 369395.
Weinstock, J. 1982 J. Fluid Mech. 116, 129.
Wyngaard, J. C. 1980 In Turbulent Shear Flows 2 (ed. J. S. Bradbury, F. Durst, B. E. Launder F. W. Schmidt & J. H. Whitelaw), pp. 352365. Springer.
Yoshizawa, A. 1982 J. Phys. Soc. Japan 51, 23262337.