Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-20T09:19:14.522Z Has data issue: false hasContentIssue false

Theoretical analysis of inertially irrotational and solenoidal flow in two-dimensional radial-flow pump and turbine impellers with equiangular blades

Published online by Cambridge University Press:  26 April 2006

F. C. Visser
Affiliation:
Faculty of Mechanical Engineering, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
J. J. H. Brouwers
Affiliation:
Faculty of Mechanical Engineering, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
R. Badie
Affiliation:
Faculty of Mechanical Engineering, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands

Abstract

Using the theory of functions of a complex variable, in particular the method of conformal mapping, the irrotational and solenoidal flow in two-dimensional radialflow pump and turbine impellers fitted with equiangular blades is analysed. Exact solutions are given for the fluid velocity along straight radial pump and turbine impeller blades, while for logarithmic spiral pump impeller blades solutions are given which hold asymptotically as (r1/r2)n→0, in which r1 is impeller inner radius, r2 is impeller outer radius and n is the number of blades. Both solutions are given in terms of a Fourier series, with the Fourier coefficients being given by the (Gauss) hypergeometric function and the beta function respectively. The solutions are used to derive analytical expressions for a number of parameters which are important for practical design of radial turbomachinery, and which reflect the two-dimensional nature of the flow field. Parameters include rotational slip of the flow leaving radial impellers, conditions to avoid reverse flow between impeller blades, and conditions for shockless flow at impeller entry, with the number of blades and blade curvature as variables. Furthermore, analytical extensions to classical one-dimensional Eulerian-based expressions for developed head of pumps and delivered work of turbines are given.

Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1972 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. John Wiley and Sons.
Acosta, A. J. 1954 An experimental and theoretical investigation of two-dimensional centrifugal impellers. Trans. ASME 76, 749763.Google Scholar
Ayyubi, S. B. & Rao, Y. V. N. 1971 Theoretical analysis of flow through two-dimensional centrifugal pump impeller by method of singularities. Trans. ASME D: J. Basic Engng 93, 3541.Google Scholar
Badie, R. 1993 Analysis of unsteady potential flows in centrifugal pumps. Thesis, University of Twente.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Betz, A. 1964 Konforme Abbildung. Springer.
Betz, A. 1966 Introduction to the Theory of Flow Machines. Pergamon.
Busemann, A. 1928 Das Förderhöhenverhältnis radialer Kreiselpumpen mit logaritmisch-spiraligen Schaufeln. Z. Angew. Math. Mech. 8, 372384.Google Scholar
Elholm, T., Ayder, E. & Braembussche, R. van den 1992 Experimental study of the swirling flow in the volute of a centrifugal pump. J. Turbomachinery 114, 366372.Google Scholar
Gradshteyn, I. S. & Ryzhik, I. M. 1980 Table of Integrals, Series, and Products. Academic.
König, E. 1922 Potentialströmung durch Gitter. Z. Angew. Math. Mech. 2, 422429.Google Scholar
Kucharski, W. 1918 Strömungen einer reibungsfreien Flüssigkeit bei Rotation fester Körper. R. Oldenbourg.
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.
Milne-Thomson, L. M. 1958 Theoretical Aerodynamics. Macmillan.
Mohana Kumar, T. C. & Rao, Y. V. N. 1977 Theoretical investigation of pressure distribution along the surfaces of a thin blade of arbitrary geometry of a two-dimensional centrifugal pump impeller. Trans. ASME I: J. Fluids Engng 99, 531542.Google Scholar
Moretti, G. 1964 Functions of a Complex Variable. Prentice-Hall.
Pfleiderer, C. 1991 Strömungsmaschinen. Springer.
Prandtl, L. 1963 Essentials of Fluid Dynamics. Blackie and Son.
Schulz, W. 1928a Das Förderhöhenverhältnis der Kreiselpumpen für die ideale und wirkliche Flüssigkeit. Forschg. Ing.-Wes. vol. 307. VDI Verlag.
Schulz, W. 1928b Das Förderhöhenverhältnis radialer Kreiselpumpen mit logaritmisch-spiraligen Schaufeln. Z. Angew. Math. Mech. 8, 1017.Google Scholar
Spannhake, W. 1925a Die Leistungsaufnahme einer parallelkränzigen Zentrifugalpumpe. Festschrift der Technische Hochschule Karlsruhe, pp. 387400.
Spannhake, W. 1925b Anwendung der Konforme Abbildung auf die Berechnung von Strömungen in Kreiselrädern. Z. Angew. Math. Mech. 5, 481484.Google Scholar
Spannhake, W. 1930 Eine strömungstechnische Aufgabe der Kreiselradforschung und ein Ansatz zu ihrer Lösung. Mitteillungen des Instituts für Strömungsmaschinen der Technische Hochschule Karlsruhe, pp. 438.
Sörensen, E. 1927 Potentialströmungen durch rotierende Kreiselräder. Z. Angew Math. Mech. 7, 89106.Google Scholar
Sörensen, E. 1941 Potential flow through centrifugal pumps and turbines. NACA TM 973.
Uchimaru, S. 1925 Experimental research on the distribution of water pressure in a centrifugal impeller. J. Fac. Engng, Tokyo Imperial University 16, 157169.Google Scholar
Uchimaru, S. & Kito, S. 1931 On potential flow of water through a centrifugal impeller. J. Fac. Engng, Tokyo Imperial University 19, 191223.Google Scholar
Vavra, M. H. 1960 Aero-Thermodynamics and Flow in Turbomachines. John Wiley and Sons.
Wiesner, F. J. 1967 A review of slip factors for centrifugal impellers. Trans. ASME A: J. Engng Power 89, 558572.Google Scholar
Whittaker, E. T. & Watson, G. N. 1927 A Course of Modern Analysis. Cambridge University Press.
Supplementary material: PDF

Visser et al. supplementary material

Appendix

Download Visser et al. supplementary material(PDF)
PDF 1.9 MB