Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T22:01:07.797Z Has data issue: false hasContentIssue false

Testing the limits of quasi-geostrophic theory: application to observed laboratory flows outside the quasi-geostrophic regime

Published online by Cambridge University Press:  13 April 2010

PAUL D. WILLIAMS*
Affiliation:
Department of Meteorology, University of Reading, Earley Gate, Reading RG6 6BB, UK
PETER L. READ
Affiliation:
Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
THOMAS W. N. HAINE
Affiliation:
Department of Earth and Planetary Sciences, 329 Olin Hall, 34th and North Charles Streets, Johns Hopkins University, Baltimore, MD 21218, USA
*
Email address for correspondence: [email protected]

Abstract

We compare laboratory observations of equilibrated baroclinic waves in the rotating two-layer annulus, with numerical simulations from a quasi-geostrophic model. The laboratory experiments lie well outside the quasi-geostrophic regime: the Rossby number reaches unity; the depth-to-width aspect ratio is large; and the fluid contains ageostrophic inertia–gravity waves. Despite being formally inapplicable, the quasi-geostrophic model captures the laboratory flows reasonably well. The model displays several systematic biases, which are consequences of its treatment of boundary layers and neglect of interfacial surface tension and which may be explained without invoking the dynamical effects of the moderate Rossby number, large aspect ratio or inertia–gravity waves. We conclude that quasi-geostrophic theory appears to continue to apply well outside its formal bounds.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Appleby, J. C. 1982 Comparative theoretical and experimental studies of baroclinic waves in a two-layer system. PhD thesis, University of Leeds.Google Scholar
Arakawa, A. 1966 Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. J. Comput. Phys. 1, 119143.CrossRefGoogle Scholar
Bouchet, F. & Sommeria, J. 2002 Emergence of intense jets and Jupiter's Great Red Spot as maximum-entropy structures. J. Fluid Mech. 464, 165207.CrossRefGoogle Scholar
Brugge, R., Nurser, A. J. G. & Marshall, J. C. 1987 A quasi-geostrophic ocean model: some introductory notes. Tech Rep. Blackett Laboratory, Imperial College.Google Scholar
Cattaneo, F. & Hart, J. E. 1990 Multiple states for quasi-geostrophic channel flows. Geophys. Astrophys. Fluid Dyn. 54, 133.CrossRefGoogle Scholar
Charney, J. G., Fjørtoft, R. & von Neumann, J. 1950 Numerical integration of the barotropic vorticity equation. Tellus 2 (4), 237254.CrossRefGoogle Scholar
Ekman, V. W. 1905 On the influence of the Earth's rotation on ocean currents. Ark. Math. Astr. Fys. 2, 152.Google Scholar
Flierl, G. R. 1977 Simple applications of McWilliams' ‘A note on a consistent quasigeostrophic model in a multiply connected domain’. Dyn. Atmos. Oceans 1, 443453.CrossRefGoogle Scholar
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Haltiner, G. J. & Williams, R. T. 1980 Numerical Prediction and Dynamic Meteorology, 2nd edn. Wiley.Google Scholar
Hart, J. E. 1972 A laboratory study of baroclinic instability. Geophys. Fluid Dyn. 3, 181209.CrossRefGoogle Scholar
Hart, J. E. 1981 Wavenumber selection in nonlinear baroclinic instability. J. Atmos. Sci. 38 (2), 400408.2.0.CO;2>CrossRefGoogle Scholar
Hart, J. E. 1995 Nonlinear Ekman suction and ageostrophic effects in rapidly rotating flows. Geophys. Astrophys. Fluid Dyn. 79, 201222.CrossRefGoogle Scholar
Hart, J. E. & Kittelman, S 1986 A method for measuring interfacial wave fields in the laboratory. Geophys. Astrophys. Fluid Dyn. 36, 179185.CrossRefGoogle Scholar
Hignett, P., White, A. A., Carter, R. D. Jackson, W. D. N. & Small, R. M. 1985 A comparison of laboratory measurements and numerical simulations of baroclinic wave flows in a rotating cylindrical annulus. Quart. J. R. Meteorol. Soc. 111, 131154.CrossRefGoogle Scholar
King, J. C. 1979 Instabilities and nonlinear wave interactions in a two-layer rotating fluid. PhD thesis, University of Leeds.Google Scholar
Kwon, H. J. & Mak, M. 1988 On the equilibration in nonlinear barotropic instability. J. Atmos. Sci. 45 (2), 294308.2.0.CO;2>CrossRefGoogle Scholar
Lewis, S. R. 1992 A quasi-geostrophic numerical model of a rotating internally heated fluid. Geophys. Astrophys. Fluid Dyn. 65, 3155.CrossRefGoogle Scholar
Lovegrove, A. F. 1997 Bifurcations and instabilities in rotating two-layer fluids. PhD thesis, Oxford University.Google Scholar
Lovegrove, A. F., Read, P. L. & Richards, C. J. 2000 Generation of inertia–gravity waves in a baroclinically unstable fluid. Quart. J. R. Meteorol. Soc. 126, 32333254.Google Scholar
McIntyre, M. E. 1967 Convection and baroclinic instability in rotating fluids. PhD thesis, Cambridge University.Google Scholar
McWilliams, J. C. 1977 A note on a consistent quasigeostrophic model in a multiply connected domain. Dyn. Atmos. Oceans 1, 427441.CrossRefGoogle Scholar
McWilliams, J. C. 2007 Irreducible imprecision in atmospheric and oceanic simulations. Proc. Natl Acad. Sci. 104 (21), 87098713.CrossRefGoogle ScholarPubMed
Mesinger, F. & Arakawa, A. 1976 Numerical methods used in atmospheric models. Global Atmospheric Research Programme Publications Series No. 17. World Meteorological Organization, Geneva.Google Scholar
Mundt, M. D., Brummell, N. H. & Hart, J. E. 1995 a Linear and nonlinear baroclinic instability with rigid sidewalls. J. Fluid Mech. 291, 109138.CrossRefGoogle Scholar
Mundt, M. D., Hart, J. E. & Ohlsen, D. R. 1995 b Symmetry, sidewalls, and the transition to chaos in baroclinic systems. J. Fluid Mech. 300, 311338.CrossRefGoogle Scholar
Mundt, M. D., Vallis, G. K. & Wang, J. 1997 Balanced models and dynamics for the large- and mesoscale circulation. J. Phys. Oceanogr. 27 (6), 11331152.2.0.CO;2>CrossRefGoogle Scholar
Pedlosky, J. 1964 The stability of currents in the atmosphere and the ocean. Part I. J. Atmos. Sci. 21, 201219.2.0.CO;2>CrossRefGoogle Scholar
Pedlosky, J. 1970 Finite-amplitude baroclinic waves. J. Atmos. Sci. 27, 1530.2.0.CO;2>CrossRefGoogle Scholar
Pedlosky, J. 1971 Finite-amplitude baroclinic waves with small dissipation. J. Atmos. Sci. 28, 587597.2.0.CO;2>CrossRefGoogle Scholar
Pedlosky, J. 1972 Limit cycles and unstable baroclinic waves. J. Atmos. Sci. 29, 5363.2.0.CO;2>CrossRefGoogle Scholar
Pedlosky, J. 1981 The nonlinear dynamics of baroclinic wave ensembles. J. Fluid Mech. 102, 169209.CrossRefGoogle Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer.CrossRefGoogle Scholar
Phillips, N. A. 1954 Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus 6 (3), 273286.CrossRefGoogle Scholar
Phillips, N. A. 1956 The general circulation of the atmosphere: a numerical experiment. Quart. J. R. Meteorol. Soc. 82 (352), 123164.CrossRefGoogle Scholar
Phillips, N. A. 1963 Geostrophic motion. Rev. Geophys. 1 (2), 123176.CrossRefGoogle Scholar
Read, P. L. 2001 Transition to geostrophic turbulence in the laboratory, and as a paradigm in atmospheres and oceans. Surv. Geophys. 22 (3), 265317.CrossRefGoogle Scholar
Read, P. L., Yamazaki, Y. H., Lewis, S. R., Williams, P. D., Wordsworth, R., Miki-Yamazaki, K., Sommeria, J. & Didelle, H. 2007 Dynamics of convectively driven banded jets in the laboratory. J. Atmos. Sci. 64 (11), 40314052.CrossRefGoogle Scholar
Robert, A. J. 1966 The integration of a low order spectral form of the primitive meteorological equations. J. Meteorol. Soc. Jpn 44 (5), 237245.CrossRefGoogle Scholar
Smith, R. K. 1974 On limit cycles and vacillating baroclinic waves. J. Atmos. Sci. 31, 20082011.2.0.CO;2>CrossRefGoogle Scholar
Smith, R. K. 1977 On a theory of amplitude vacillation in baroclinic waves. J. Fluid Mech. 79 (2), 289306.CrossRefGoogle Scholar
Smith, R. K. & Pedlosky, J. 1975 A note on a theory of vacillating baroclinic waves and Reply. J. Atmos. Sci. 32, 2027.2.0.CO;2>CrossRefGoogle Scholar
Stewartson, K. 1957 On almost rigid rotations. J. Fluid Mech. 3, 1726.CrossRefGoogle Scholar
White, A. A. 1986 Documentation of the finite difference schemes used by the Met O 21 two-dimensional Navier–Stokes model. Tech Rep. Met O 21 IR86/3. Geophysical Fluid Dynamics Laboratory, UK Meteorological Office.Google Scholar
Williams, G. P. 1979 Planetary circulations. Part 2. The Jovian quasi-geostrophic regime. J. Atmos. Sci. 36, 932968.2.0.CO;2>CrossRefGoogle Scholar
Williams, P. D. 2003 Nonlinear interactions of fast and slow modes in rotating, stratified fluid flows. PhD thesis, Oxford University. http://ora.ouls.ox.ac.uk/objects/uuid:5365c658-ab60-41e9-b07b-0f635909835e.Google Scholar
Williams, P. D., Haine, T. W. N. & Read, P. L. 2004 a Stochastic resonance in a nonlinear model of a rotating, stratified shear flow, with a simple stochastic inertia–gravity wave parameterization. Nonlin. Proc. Geophys. 11 (1), 127135.CrossRefGoogle Scholar
Williams, P. D., Haine, T. W. N. & Read, P. L. 2005 On the generation mechanisms of short-scale unbalanced modes in rotating two-layer flows with vertical shear. J. Fluid Mech. 528, 122.CrossRefGoogle Scholar
Williams, P. D., Haine, T. W. N. & Read, P. L. 2008 Inertia–gravity waves emitted from balanced flow: Observations, properties, and consequences. J. Atmos. Sci. 65 (11), 35433556.CrossRefGoogle Scholar
Williams, P. D., Haine, T. W. N., Read, P. L., Lewis, S. R. & Yamazaki, Y. H. 2009 QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments. Geosci. Model Develop. 2 (1), 1332.CrossRefGoogle Scholar
Williams, P. D., Read, P. L. & Haine, T. W. N. 2004 b A calibrated, non-invasive method for measuring the internal interface height field at high resolution in the rotating, two-layer annulus. Geophys. Astrophys. Fluid Dyn. 98 (6), 453471.CrossRefGoogle Scholar
Zurita-Gotor, P. & Vallis, G. K. 2009 Equilibration of baroclinic turbulence in primitive equations and quasigeostrophic models. J. Atmos. Sci. 66, 837863.CrossRefGoogle Scholar