Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T21:48:57.981Z Has data issue: false hasContentIssue false

Temperature statistics above a deep-ocean sloping boundary

Published online by Cambridge University Press:  25 June 2015

Andrea A. Cimatoribus*
Affiliation:
Royal Netherlands Institute for Sea Research, Landsdiep 4, 1797 SZ ’t Horntje, NH, The Netherlands
H. van Haren
Affiliation:
Royal Netherlands Institute for Sea Research, Landsdiep 4, 1797 SZ ’t Horntje, NH, The Netherlands
*
Email address for correspondence: [email protected]

Abstract

We present a detailed analysis of temperature statistics in an oceanographic observational dataset. The data are collected using a moored array of thermistors, $100~\text{m}$ tall and starting $5~\text{m}$ above the bottom, deployed during four months above the slopes of a Seamount in the north-eastern Atlantic Ocean. Turbulence at this location is strongly affected by the semidiurnal tidal wave. Mean stratification is stable in the entire dataset. We compute structure functions, of order up to 10, of the distributions of temperature increments. Strong intermittency is observed, in particular, during the downslope phase of the tide, and farther from the solid bottom. In the lower half of the mooring during the upslope phase, the temperature statistics are consistent with those of a passive scalar. In the upper half of the mooring, the temperature statistics deviate from those of a passive scalar, and evidence of turbulent convective activity is found. The downslope phase is generally thought to be more shear-dominated, but our results suggest on the other hand that convective activity is present. High-order moments also show that the turbulence scaling behaviour breaks at a well-defined scale (of the order of the buoyancy length scale), which is however dependent on the flow state (tidal phase, height above the bottom). At larger scales, wave motions are dominant. We suggest that our results could provide an important reference for laboratory and numerical studies of mixing in geophysical flows.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alford, M. H. & Pinkel, R. 2000 Observations of overturning in the thermocline: the context of ocean mixing. J. Phys. Oceanogr. 30, 805832.2.0.CO;2>CrossRefGoogle Scholar
Billant, P. & Chomaz, J.-M. 2001 Self-similarity of strongly stratified inviscid flows. Phys. Fluids 13, 16451651.CrossRefGoogle Scholar
Brethouwer, G. & Lindborg, E. 2008 Passive scalars in stratified turbulence. Geophys. Res. Lett. 35, L06809.CrossRefGoogle Scholar
Celani, A., Lanotte, A., Mazzino, A. & Vergassola, M. 2001 Fronts in passive scalar turbulence. Phys. Fluids 13, 17681783.CrossRefGoogle Scholar
Celani, A., Matsumoto, T., Mazzino, A. & Vergassola, M. 2002 Scaling and universality in turbulent convection. Phys. Rev. Lett. 88, 054503.CrossRefGoogle ScholarPubMed
Ching, E. S. 1991 Probabilities for temperature differences in Rayleigh–Bénard convection. Phys. Rev. A 44, 36223629.CrossRefGoogle ScholarPubMed
Cimatoribus, A. A., van Haren, H. & Gostiaux, L. 2014 Comparison of Ellison and Thorpe scales from Eulerian ocean temperature observations. J. Geophys. Res.–Oceans 119, 70477065.CrossRefGoogle Scholar
Costa Frola, E., Mazzino, A., Cassola, F., Mortarini, L. & Ferrero, E. 2014 An experimental study of the statistics of temperature fluctuations in the atmospheric boundary layer. Boundary-Layer Meteorol. 150, 91106.CrossRefGoogle Scholar
Davis, A., Marshak, A., Wiscombe, W. & Cahalan, R. 1994 Multifractal characterizations of nonstationarity and intermittency in geophysical fields: observed, retrieved, or simulated. J. Geophys. Res.–Atmos. 99, 80558072.Google Scholar
Frisch, U. 1996 Turbulence. Cambridge University Press.Google Scholar
Garrett, C. 1990 The role of secondary circulation in boundary mixing. J. Geophys. Res.–Oceans 95, 31813188.CrossRefGoogle Scholar
Garrett, C. 1991 Marginal mixing theories. Atmos. Ocean 29, 313339.CrossRefGoogle Scholar
Gayen, B. & Sarkar, S. 2011a Boundary mixing by density overturns in an internal tidal beam. Geophys. Res. Lett. 38, L14608.CrossRefGoogle Scholar
Gayen, B. & Sarkar, S. 2011b Negative turbulent production during flow reversal in a stratified oscillating boundary layer on a sloping bottom. Phys. Fluids 23, 101703.CrossRefGoogle Scholar
van Haren, H. 2013 Stratified turbulence and small-scale internal waves above deep-ocean topography. Phys. Fluids 25, 106604.CrossRefGoogle Scholar
van Haren, H. & Gostiaux, L. 2009 High-resolution open-ocean temperature spectra. J. Geophys. Res.–Oceans 114, C05005.CrossRefGoogle Scholar
van Haren, H. & Gostiaux, L. 2010 A deep-ocean Kelvin–Helmholtz billow train. Geophys. Res. Lett. 37 (3), L03605.CrossRefGoogle Scholar
van Haren, H. & Gostiaux, L. 2012 Detailed internal wave mixing above a deep-ocean slope. J. Mar. Res. 70, 173197.CrossRefGoogle Scholar
van Haren, H., Laan, M., Buijsman, D.-J., Gostiaux, L., Smit, M. G. & Keijzer, E. 2009 NIOZ3: independent temperature sensors sampling yearlong data at a rate of 1 Hz. IEEE J. Ocean. Engng 34, 315322.CrossRefGoogle Scholar
van Haren, H., Oakey, N. & Garrett, C. 1994 Measurements of internal wave band eddy fluxes above a sloping bottom. J. Mar. Res. 52, 909946.CrossRefGoogle Scholar
Lamb, K. G. 2014 Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Annu. Rev. Fluid Mech. 46, 231254.CrossRefGoogle Scholar
Lindborg, E. & Fedina, E. 2009 Vertical turbulent diffusion in stably stratified flows. Geophys. Res. Lett. 36, L01605.CrossRefGoogle Scholar
Moum, J. N., Perlin, A., Klymak, J. M., Levine, M. D., Boyd, T. & Kosro, P. M. 2004 Convectively driven mixing in the bottom boundary layer. J. Phys. Oceanogr. 34, 21892202.2.0.CO;2>CrossRefGoogle Scholar
Munk, W. H. 1966 Abyssal recipes. Deep-Sea Res. 13, 707730.Google Scholar
Munk, W. & Wunsch, C. 1998 Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. I 45, 19772010.CrossRefGoogle Scholar
Mydlarski, L. & Warhaft, Z. 1998 Passive scalar statistics in high-Péclet-number grid turbulence. J. Fluid Mech. 358, 135175.CrossRefGoogle Scholar
Osborn, T. R. & Cox, C. S. 1972 Oceanic fine structure. Geophys. Fluid Dyn. 3, 321345.CrossRefGoogle Scholar
Pinton, J.-F. & Labbé, R. 1994 Correction to the Taylor hypothesis in swirling flows. J. Phys. (Paris) II 4, 14611468.Google Scholar
Riley, J. J. & Lindborg, E. 2008 Stratified turbulence: a possible interpretation of some geophysical turbulence measurements. J. Atmos. Sci. 65, 24162424.CrossRefGoogle Scholar
Rorai, C., Mininni, P. D. & Pouquet, A. 2014 Turbulence comes in bursts in stably stratified flows. Phys. Rev. E 89, 043002.CrossRefGoogle ScholarPubMed
Seuront, L., Schmitt, F., Schertzer, D., Lagadeuc, Y. & Lovejoy, S. 1999 Multifractal intermittency of Eulerian and Lagrangian turbulence of ocean temperature and plankton fields. Nonlinear Process. Geophys. 3, 236246.CrossRefGoogle Scholar
Shraiman, B. I. & Siggia, E. D. 2000 Scalar turbulence. Nature 405, 639646.CrossRefGoogle ScholarPubMed
Slinn, D. N. & Levine, M. D.2003 Modeling internal tides and mixing over ocean ridges. In Near-Boundary Processes and Their Parameterization: Proceedings of 13th ‘Aha Huliko’, a Hawaiian Winter Workshop, pp. 59–68.Google Scholar
Smyth, W. & Moum, J. 2012 Ocean mixing by Kelvin–Helmholtz instability. Oceanography 25, 140149.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.CrossRefGoogle Scholar
Thoroddsen, S. T. & Van Atta, C. W. 1992 Exponential tails and skewness of density-gradient probability density functions in stably stratified turbulence. J. Fluid Mech. 244, 547566.CrossRefGoogle Scholar
Thorpe, S. A. 2012 On the Kelvin–Helmholtz route to turbulence. J. Fluid Mech. 708, 14.CrossRefGoogle Scholar
Thorpe, S. A., Curé, M. & White, M. 1991 The skewness of temperature derivatives in oceanic boundary layers. J. Phys. Oceanogr. 21, 428433.2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A., Hall, P. & White, M. 1990 The variability of mixing at the continental slope. Phil. Trans. R. Soc. Lond. A 331 (1616), 183194.Google Scholar
Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203240.CrossRefGoogle Scholar
Winters, K. B. & D’Asaro, E. A. 1996 Diascalar flux and the rate of fluid mixing. J. Fluid Mech. 317, 179193.CrossRefGoogle Scholar
Zhai, X., Johnson, H. L. & Marshall, D. P. 2010 Significant sink of ocean-eddy energy near western boundaries. Nat. Geosci. 3, 608612.CrossRefGoogle Scholar
Zhou, S.-Q. & Xia, K.-Q. 2002 Plume statistics in thermal turbulence: mixing of an active scalar. Phys. Rev. Lett. 89, 184502.CrossRefGoogle ScholarPubMed