Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T21:53:58.207Z Has data issue: false hasContentIssue false

The Taylor–Melcher leaky dielectric model as a macroscale electrokinetic description

Published online by Cambridge University Press:  14 May 2015

Ory Schnitzer
Affiliation:
Department of Mathematics, Technion - Israel Institute of Technology, Haifa 32000, Israel
Ehud Yariv
Affiliation:
Department of Mathematics, Technion - Israel Institute of Technology, Haifa 32000, Israel

Abstract

While the Taylor–Melcher electrohydrodynamic model entails ionic charge carriers, it addresses neither ionic transport within the liquids nor the formation of diffuse space-charge layers about their common interface. Moreover, as this model is hinged upon the presence of non-zero interfacial-charge density, it appears to be in contradiction with the aggregate electro-neutrality implied by ionic screening. Following a brief synopsis published by Baygents & Saville (Third International Colloquium on Drops and Bubbles, AIP Conference Proceedings, vol. 7, 1989, American Institute of Physics, pp. 7–17) we systematically derive here the macroscale description appropriate for leaky dielectric liquids, starting from the primitive electrokinetic equations and addressing the double limit of thin space-charge layers and strong fields. This derivation is accomplished through the use of matched asymptotic expansions between the narrow space-charge layers adjacent to the interface and the electro-neutral bulk domains, which are homogenized by the strong ionic advection. Electrokinetic transport within the electrical ‘triple layer’ comprising the genuine interface and the adjacent space-charge layers is embodied in effective boundary conditions; these conditions, together with the simplified transport within the bulk domains, constitute the requisite macroscale description. This description essentially coincides with the familiar equations of Melcher & Taylor (Annu. Rev. Fluid Mech., vol. 1, 1969, pp. 111–146). A key quantity in our macroscale description is the ‘apparent’ surface-charge density, provided by the transversely integrated triple-layer microscale charge. At leading order, this density vanishes due to the expected Debye-layer screening; its asymptotic correction provides the ‘interfacial’ surface-charge density appearing in the Taylor–Melcher model. Our unified electrohydrodynamic treatment provides a reinterpretation of both the Taylor–Melcher conductivity-ratio parameter and the electrical Reynolds number. The latter, expressed in terms of fundamental electrokinetic properties, becomes $O(1)$ only for intense applied fields, comparable with the transverse field within the space-charge layers; at this limit the asymptotic scheme collapses. Surface-charge advection is accordingly absent in the macroscale description. Owing to the inevitable presence of (screened) net charge on the genuine interface, the drop also undergoes electrophoretic motion. The associated flow, however, is asymptotically smaller than that corresponding to the Taylor–Melcher circulation. Our successful matching procedure contrasts the analysis of Baygents & Saville, who considered more general electrolytes and were unable to directly match the inner and outer regions. We discuss this difference in detail.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acrivos, A. & Goddard, J. D. 1965 Asymptotic expansions for laminar forced-convection heat and mass transfer. Part 1. Low speed flows. J. Fluid Mech. 23 (02), 273291.CrossRefGoogle Scholar
Anderson, J. L. 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 30, 139165.CrossRefGoogle Scholar
Batchelor, G. 1956 On steady laminar flow with closed streamlines at large Reynolds number. J. Fluid Mech. 1 (2), 177190.CrossRefGoogle Scholar
Baygents, J. C. & Saville, D. A. 1989 The circulation produced in a drop by an electric field: a high field strength electrokinetic model. In Drops & Bubbles, Third International Colloquium, Monterey 1988 (ed. Wang, T.), AIP Conference Proceedings, vol. 7, pp. 717. American Institute of Physics.Google Scholar
Baygents, J. C. & Saville, D. A. 1991 Electrophoresis of drops and bubbles. J. Chem. Soc. Faraday Trans. 87 (12), 18831898.CrossRefGoogle Scholar
Ben, Y., Demekhin, E. A. & Chang, H.-C. 2004 Nonlinear electrokinetics and ‘superfast’ electrophoresis. J. Colloid Interface Sci. 276, 483497.CrossRefGoogle ScholarPubMed
Chu, K. T. & Bazant, M. Z. 2006 Nonlinear electrochemical relaxation around conductors. Phys. Rev. E 74 (1), 011501.CrossRefGoogle ScholarPubMed
Craster, R. V. & Matar, O. K. 2005 Electrically induced pattern formation in thin leaky dielectric films. Phys. Fluids 17 (3), 032104.CrossRefGoogle Scholar
Derjaguin, B. V. & Dukhin, S. S. 1974 Nonequilibrium double layer and electrokinetic phenomena. In Electrokinetic Phenomena (ed. Matijevic, E.), Surface and Colloid Science, vol. 7, pp. 273336. John Wiley & Sons.Google Scholar
Feng, J. Q. 1999 Electrohydrodynamic behaviour of a drop subjected to a steady uniform electric field at finite electric Reynolds number. Proc. R. Soc. Lond. A 455 (1986), 22452269.CrossRefGoogle Scholar
Feng, J. Q. & Scott, T. C. 1996 A computational analysis of electrohydrodynamics of a leaky dielectric drop in an electric field. J. Fluid Mech. 311, 289326.CrossRefGoogle Scholar
Gambhire, P. & Thaokar, R. 2014 Electrokinetic model for electric-field-induced interfacial instabilities. Phys. Rev. E 89 (3), 032409.CrossRefGoogle ScholarPubMed
Leal, L. G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press.CrossRefGoogle Scholar
Mani, A. & Bazant, M. Z. 2011 Deionization shocks in microstructures. Phys. Rev. E 84 (6), 061504.CrossRefGoogle ScholarPubMed
Melcher, J. R. & Taylor, G. I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1 (1), 111146.CrossRefGoogle Scholar
Monroe, C. W., Daikhin, L. I., Urbakh, M. & Kornyshev, A. A. 2006 Electrowetting with electrolytes. Phys. Rev. Lett. 97 (13), 136102.CrossRefGoogle ScholarPubMed
Morrison, F. A. 1970 Electrophoresis of a particle of arbitrary shape. J. Colloid Interface Sci. 34, 210214.CrossRefGoogle Scholar
O’Brien, R. W. 1983 The solution of the electrokinetic equations for colloidal particles with thin double layers. J. Colloid Interface Sci. 92 (1), 204216.CrossRefGoogle Scholar
Ohshima, H., Healy, T. W. & White, L. R. 1984 Electrokinetic phenomena in a dilute suspension of charged mercury drops. J. Chem. Soc. Faraday Trans. 80 (12), 16431667.CrossRefGoogle Scholar
Rivette, N. J. & Baygents, J. C. 1996 A note on the electrostatic force and torque acting on an isolated body in an electric field. Chem. Engng Sci. 51 (23), 52055211.CrossRefGoogle Scholar
Salipante, P. F. & Vlahovska, P. M. 2010 Electrohydrodynamics of drops in strong uniform dc electric fields. Phys. Fluids 22, 112110.CrossRefGoogle Scholar
Salipante, P. F. & Vlahovska, P. M. 2014 Vesicle deformation in DC electric pulses. Soft Matt. 10 (19), 33863393.CrossRefGoogle ScholarPubMed
Saville, D. A. 1977 Electrokinetic effects with small particles. Annu. Rev. Fluid Mech. 9, 321337.CrossRefGoogle Scholar
Saville, D. A. 1997 Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29 (1), 2764.CrossRefGoogle Scholar
Schnitzer, O., Frankel, I. & Yariv, E. 2013 Electrokinetic flows about conducting drops. J. Fluid Mech. 722, 394423.CrossRefGoogle Scholar
Schnitzer, O., Frankel, I. & Yariv, E. 2014 Electrophoresis of bubbles. J. Fluid Mech. 753, 4979.CrossRefGoogle Scholar
Schnitzer, O. & Yariv, E. 2012a Macroscale description of electrokinetic flows at large zeta potentials: nonlinear surface conduction. Phys. Rev. E 86, 021503.CrossRefGoogle ScholarPubMed
Schnitzer, O. & Yariv, E. 2012b Strong-field electrophoresis. J. Fluid Mech. 701, 333351.CrossRefGoogle Scholar
Schnitzer, O. & Yariv, E. 2013 Nonlinear electrokinetic flow about a polarized conducting drop. Phys. Rev. E 87, 041002R.Google ScholarPubMed
Schnitzer, O., Zeyde, R., Yavneh, I. & Yariv, E. 2013 Nonlinear electrophoresis of a highly charged colloidal particle. Phys. Fluids 25, 052004.CrossRefGoogle Scholar
Taylor, G. 1966 Studies in electrohydrodynamics. I. The circulation produced in a drop by electrical field. Proc. R. Soc. Lond. A 291 (1425), 159166.Google Scholar
Torza, S., Cox, R. G. & Mason, S. G. 1971 Electrohydrodynamic deformation and burst of liquid drop. Phil. Trans. R. Soc. Lond. A 269 (1198), 295319.Google Scholar
Vizika, O. & Saville, D. A. 1992 The electrohydrodynamic deformation of drops suspended in liquids in steady and oscillatory electric fields. J. Fluid Mech. 239 (1), 121.CrossRefGoogle Scholar
Xu, X. & Homsy, G. M. 2006 The settling velocity and shape distortion of drops in a uniform electric field. J. Fluid Mech. 564, 395414.CrossRefGoogle Scholar
Yariv, E. 2009 An asymptotic derivation of the thin-Debye-layer limit for electrokinetic phenomena. Chem. Engng Commun. 197, 317.CrossRefGoogle Scholar
Yariv, E. 2010 Migration of ion-exchange particles driven by a uniform electric field. J. Fluid Mech. 655, 105121.CrossRefGoogle Scholar
Yariv, E., Schnitzer, O. & Frankel, I. 2011 Streaming-potential phenomena in the thin-Debye-layer limit. Part 1. General theory. J. Fluid Mech. 685, 306334.CrossRefGoogle Scholar
Zholkovskij, E. K., Masliyah, J. H. & Czarnecki, J. 2002 An electrokinetic model of drop deformation in an electric field. J. Fluid Mech. 472 (1), 127.CrossRefGoogle Scholar