Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T14:34:16.489Z Has data issue: false hasContentIssue false

Tank-treading of microcapsules in shear flow

Published online by Cambridge University Press:  26 January 2016

C. de Loubens
Affiliation:
Aix-Marseille Université, CNRS, Centrale Marseille, IRPHE, UMR 7342, Marseille 13384 Marseille, France LIPhy, CNRS, UMR 5588, Université de Grenoble I, 38402 Saint Martin d’Hères, France
J. Deschamps
Affiliation:
Aix-Marseille Université, CNRS, Centrale Marseille, IRPHE, UMR 7342, Marseille 13384 Marseille, France
F. Edwards-Levy
Affiliation:
ICMR, CNRS, UMR 7312, France
M. Leonetti*
Affiliation:
Aix-Marseille Université, CNRS, Centrale Marseille, IRPHE, UMR 7342, Marseille 13384 Marseille, France
*
Email address for correspondence: [email protected]

Abstract

We investigated experimentally the deformation of soft microcapsules and the dynamics of their membrane in simple shear flows. Firstly, the tank-treading motion, i.e. the rotation of the membrane, was visualized and quantified by tracking particles included in the membrane by a new protocol. The period of membrane rotation increased quadratically with the extension of the long axis. The tracking of the distance between two close microparticles showed membrane contraction at the tips and stretching on the sides, a specific property of soft particles such as capsules. The present experimental results are discussed in regard to previous numerical simulations. This analysis showed that the variation of the tank-treading period with the Taylor parameter (deformation) cannot be explained by purely elastic membrane models. It suggests a strong effect of membrane viscosity whose order of magnitude is determined. Secondly, two distinct shapes of sheared microcapsules were observed. For moderate deformations, the shape was a steady ellipsoid in the shear plane. For larger deformations, the capsule became asymmetric and presented an S-like shape. When the viscous shear stress increased by three orders of magnitude, the short axis decreased by 70 % whereas the long axis increased by 100 % before any break-up. The inclination angle decreased from 40° to 8°, almost aligned with the flow direction as expected by theory and numerics on capsules and from experiments, theory and numerics on drops and vesicles. Whatever the microcapsule size and the concentration of proteins, the characteristic lengths of the shape, the Taylor parameter and the inclination angle satisfy master curves versus the long axis or the normalized shear stress or the capillary number in agreement with theory for non-negligible membrane viscosity in the regime of moderate deformations. Finally, we observed that very small deviation from sphericity gave rise to swinging motion, i.e. shape oscillations, in the small-deformation regime. In conclusion, this study of tank-treading motion supports the role of membrane viscosity on the dynamics of microcapsules in shear flow by independent methods that compare experimental data both with numerical results in the regime of large deformations and with theory in the regime of moderate deformations.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abkarian, M., Faivre, M. & Viallat, A. 2007 Swinging of red blood cells under shear flow. Phys. Rev. Lett. 98, 188302.CrossRefGoogle ScholarPubMed
Abreu, D., Levant, M., Steinberg, V. & Seifert, U. 2014 Fluid vesicles in flow. Adv. Colloid Interface Sci. 208, 129141.Google Scholar
Andry, M. C., Edwards-Levy, F. & Levy, M. C. 1996 Free amino group content of serum albumin microcapsules. III. A study at low pH values. Intl J. Pharm. 128, 197202.Google Scholar
Bagchi, P. & Kalluri, R. M. 2009 Dynamics of nonspherical capsules in shear flow. Phys. Rev. E 80, 016307.CrossRefGoogle ScholarPubMed
Barthès-Biesel, D. 2011 Modeling the motion of capsules in flow. Curr. Opin. Colloid Interface Sci. 16, 312.Google Scholar
Barthes-Biesel, D. & Sgaier, H. 1985 Role of membrane viscosity in the orientation and deformation of a spherical capsule suspended in shear flow. J. Fluid Mech. 160, 119135.Google Scholar
Chang, K. S. & Olbricht, W. 1993a Experimental studies of the deformation and breakup of a synthetic capsule in steady and unsteady simple shear flow. J. Fluid Mech. 250, 609633.CrossRefGoogle Scholar
Chang, K. S. & Olbricht, W. 1993b Experimental studies of the deformation of a synthetic capsule in extensional flow. J. Fluid Mech. 250, 587608.Google Scholar
Dodson, W. R. III & Dimitrakopoulos, P. 2009 Dynamics of strain-hardening and strain-softening capsules in strong planar extensional flows via an interfacial spectral boundary element algorithm for elastic membranes. J. Fluid Mech. 641, 263296.Google Scholar
Dupont, C., Salsac, A.-V., Barthès-Biesel, D., Vidrascu, M. & Le Tallec, P. 2015 Influence of bending resistance on the dynamics of a spherical capsule in shear flow. Phys. Fluids 27 (5), 051902.Google Scholar
Finken, R. & Seifert, U. 2006 Wrinkling of microcapsules in shear flow. J. Phys.: Condens. Matter 18, L185L191.Google Scholar
Fisher, T. M., Stohr-Liesen, M. & Schmid-Schonbein, H. 1978 The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow. Science 202, 894896.Google Scholar
Freund, J. B. 2014 Numerical simulation of flowing blood cells. Annu. Rev. Fluid Mech. 46, 6795.Google Scholar
Gounley, J., Boedec, G., Jaeger, M. & Leonetti, M.2015 Influence of surface viscosity on droplets in shear flow. J. Fluid Mech. (in press), doi:10.1017/jfm.2016.39.Google Scholar
Guido, S. & Villone, M. 1998 Three-dimensional shape of a drop under simple shear flow. J. Rheol. 42, 395415.Google Scholar
Gunes, D. Z., Pouzot, M., Ulrich, S. & Mezzenga, R. 2011 Tuneable thickness barriers for composite o/w and w/o capsules, films, and their decoration with particles. Soft Matt. 7, 92069215.Google Scholar
Hejazi, R. & Amiji, M. 2003 Chitosan-based gastrointestinal delivery systems. J. Control. Release 89 (2), 151165.Google Scholar
Hochmuth, R. M., Worthy, P. R. & Evans, E. A. 1979 Red cell extensional recovery and the determination of membrane viscosity. Biophys. J. 26, 101114.Google Scholar
Kantsler, V. & Steinberg, V. 2005 Orientation and dynamics of a vesicle in tank-treading motion in shear flow. Phys. Rev. Lett. 95 (25), 258101.CrossRefGoogle ScholarPubMed
Keller, S. R. & Skalak, R. 1982 Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid Mech. 120, 2747.Google Scholar
Kennedy, M. R., Pozrikidis, C. & Skalak, R. 1994 Motion and deformation of liquid drops, and the rheology of dilute emulsions in simple shear flow. Comput. Fluids 23, 251278.Google Scholar
Kessler, S., Finken, R. & Seifert, U. 2008 Swinging and tumbling of elastic capsules in shear flow. J. Fluid Mech. 605, 207226.CrossRefGoogle Scholar
Kessler, S., Finken, R. & Seifert, U. 2009 Elastic capsules in shear flow: analytical solutions for constant and time-dependent shear rates. Eur. Phys. J. E 29, 339413.Google Scholar
Koleva, I. & Rehage, H. 2012 Deformation and orientation dynamics of polysiloxane microcapsules in liner shear flow. Soft Matt. 8, 36813693.Google Scholar
Lac, E., Barthès-Biesel, D., Pelekasis, N. & Tsamopoulos, J. 2004 Spherical capsules in three-dimensional unbounded Stokes flows: effect of the membrane constitutive law and onset of buckling. J. Fluid Mech. 516, 303334.CrossRefGoogle Scholar
Lefebvre, Y., Leclerc, E., Barthès-Biesel, D., Walter, J. & Edwards-Lévy, F. 2008 Flow of artificial microcapsules in microfluidic channels: a method for determining the elastic properties of the membrane. Phys. Fluids 20, 123102.CrossRefGoogle Scholar
Li, X., Vlahovska, P. M. & Karniadakis, G. E. 2013 Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matt. 9, 2837.Google Scholar
Long, Y., Liu, C., Zhao, B., Song, K., Yang, G. & Tung, C.-H. 2015 Bio-inspired controlled release through compression–relaxation cycles of microcapsules. NPG Asia Mater. 7 (1), e148.Google Scholar
de Loubens, C., Deschamps, J., Boedec, G. & Leonetti, M. 2015 Stretching of capsules in an elongation flow, a route to constitutive law. J. Fluid Mech. 767, R3.Google Scholar
de Loubens, C., Deschamps, J., Georgelin, M., Charrier, A., Edwards-Lévy, F. & Leonetti, M. 2014 Mechanical characterization of cross-linked serum albumin microcapsules. Soft Matt. 10, 45614568.Google Scholar
Nash, G. B. & Meiselman, H. J. 1983 Red cell and ghost viscoelasticity. Biophys. J. 43, 6373.CrossRefGoogle ScholarPubMed
Omori, T., Imai, Y., Yamaguchi, T. & Ishikiwa, T. 2012 Reorientation of a nonspherical capsule in creeping shear flow. Phys. Rev. Lett. 108, 138102.CrossRefGoogle ScholarPubMed
Pozrikidis, C. 2001 Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J. Fluid Mech. 440, 269291.Google Scholar
Ramanujan, S. & Pozrikidis, C. 1998 Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J. Fluid Mech. 361, 117143.Google Scholar
Risso, F., Colle-Paillot, F. & Zagzoule, M. 2006 Experimental investigation of a bioartificial capsule flowing in a narrow tube. J. Fluid Mech. 547, 149173.Google Scholar
Shewan, H. M. & Stokes, J. R. 2013 Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications. J. Food Engng 119 (4), 781792.Google Scholar
Sui, Y., Chew, Y. T., Roy, P., Chen, X. B. & Low, H. T. 2007 Transient deformation of elastic capsules in shear flow: effect of membrane bending stiffness. Phys. Rev. E 75 (6), 066301.Google Scholar
Sui, Y., Low, H. T., Chew, Y. T. & Roy, P. 2008 Tank-treading, swinging and tumbling of liquid-filled elastic capsules in shear flow. Phys. Rev. E 77, 016310.Google Scholar
Taylor, G. I. 1934 The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146, 501523.Google Scholar
Vlahovska, P., Podgorski, T. & Misbah, C. 2009 Vesicles and red blood cells in flow: from individual dynamics to rheology. C. R. Physique 10, 775789.CrossRefGoogle Scholar
Vlahovska, P. M., Young, Y.-N., Danker, G. & Misbah, C. 2011 Dynamics of a non-spherical microcapsule with incompressible interface in shear flow. J. Fluid Mech. 678, 221247.Google Scholar
Walter, A., Rehage, H. & Leonhard, H. 2001 Shear induced deformation of microcapsules: shape oscillations and membrane folding. Colloids Surf. A 123, 183185.Google Scholar
Walter, J., Salsac, A.-V., Barthès-Biesel, D. & Le Tallec, P. 2010 Coupling of finite element and boundary integral methods for a capsule in a Stokes flow. Intl J. Numer. Meth. Engng 83, 829850.Google Scholar
Yazdani, A. & Bagchi, P. 2013 Influence of membrane viscosity on capsule dynamics in shear flow. J. Fluid Mech. 718, 569595.Google Scholar
Zhu, L. & Brandt, L. 2015 The motion of a deforming capsule through a corner. J. Fluid Mech. 770, 374397.CrossRefGoogle Scholar

de Loubens et al. supplementary movie

A capsule in a simple shear flow in the regime of moderate deformation. Inner micro-particles follow the tank-treading (rotation) motion of the membrane.

Download de Loubens et al. supplementary movie(Video)
Video 5.8 MB

de Loubens et al. supplementary movie

The same capsule as in Tank-treading_1 at a higher shear rate

Download de Loubens et al. supplementary movie(Video)
Video 4.8 MB

de Loubens et al. supplementary movie

Capsule in a simple shear flow in the regime of large deformations. The capsule has a typical S-like shape observed also in numerical simulations.

Download de Loubens et al. supplementary movie(Video)
Video 1.2 MB