Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T05:50:23.101Z Has data issue: false hasContentIssue false

Synthetic jet generation by high-frequency cavitation

Published online by Cambridge University Press:  21 June 2017

Milad Mohammadzadeh
Affiliation:
School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore, Singapore
Silvestre Roberto Gonzalez-Avila
Affiliation:
School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore, Singapore
Kun Liu
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore, Singapore
Qi Jie Wang
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore, Singapore
Claus-Dieter Ohl*
Affiliation:
School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore, Singapore
*
Email address for correspondence: [email protected]

Abstract

Cavitation bubbles are nucleated at a high repetition rate in water by delivering a pulsed laser through a fibre optic. Continuous high-frequency cavitation drives a stream away from the fibre tip. Using high-speed photography and particle image velocimetry, the stream is characterised as a synthetic jet, generated by trains of vortices induced by non-spherical bubble collapse. At low laser power, the bubbles collapse before the arrival of a subsequent laser pulse. Yet, by increasing the laser power, a system of bubbles is formed which leads to complex bubble–bubble interactions. The synthetic jet is observed regardless of the bubble formation regime, demonstrating the stability of the phenomenon. Synthetic jet generation by repetitive bubble collapse extends the well-studied acoustic streaming from small-amplitude bubble oscillations.

Type
Rapids
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apfel, R. E. 1981 Acoustic cavitation prediction. J. Acoust. Soc. Am. 69 (6), 16241633.Google Scholar
Arndt, R. E. A. 1981 Cavitation in fluid machinery and hydraulic structures. Annu. Rev. Fluid Mech. 13 (1), 273326.Google Scholar
Azam, F. I., Karri, B., Ohl, S.-W., Klaseboer, E. & Khoo, B. C. 2013 Dynamics of an oscillating bubble in a narrow gap. Phys. Rev. E 88 (4), 043006.Google Scholar
Barcikowski, S. & Compagnini, G. 2013 Advanced nanoparticle generation and excitation by lasers in liquids. Phys. Chem. Chem. Phys. 15 (9), 30223026.CrossRefGoogle ScholarPubMed
Blake, J. R. & Gibson, D. C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19 (1), 99123.Google Scholar
Blake, J. R., Taib, B. B. & Doherty, G. 1986 Transient cavities near boundaries. Part 1. Rigid boundary. J. Fluid Mech. 170, 479497.Google Scholar
Blake, J. R., Taib, B. B. & Doherty, G. 1987 Transient cavities near boundaries. Part 2. Free surface. J. Fluid Mech. 181, 197212.Google Scholar
Brennen, C. E. 2013 Cavitation and Bubble Dynamics. Cambridge University Press.Google Scholar
Brujan, E. A., Keen, G. S., Vogel, A. & Blake, J. R. 2002 The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. Fluids 14 (1), 8592.Google Scholar
Brujan, E.-A., Nahen, K., Schmidt, P. & Vogel, A. 2001 Dynamics of laser-induced cavitation bubbles near an elastic boundary. J. Fluid Mech. 433, 251281.Google Scholar
Buogo, S. & Cannelli, G. B. 2002 Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model. J. Acoust. Soc. Am. 111 (6), 25942600.Google Scholar
Cleary, S. F. 1977 Laser pulses and the generation of acoustic transients in biological material. In Laser Applications in Medicine and Biology, pp. 175219. Springer.Google Scholar
Coleman, A. J., Saunders, J. E., Crum, L. A. & Dyson, M. 1987 Acoustic cavitation generated by an extracorporeal shockwave lithotripter. Ultrasound Med. Biol. 13 (2), 6976.Google Scholar
Coussios, C. C. & Roy, R. A. 2008 Applications of acoustics and cavitation to noninvasive therapy and drug delivery. Annu. Rev. Fluid Mech. 40, 395420.Google Scholar
Davidson, B. J. & Riley, N. 1971 Cavitation microstreaming. J. Sound Vib. 15 (2), 217233.Google Scholar
Elder, S. A. 1959 Cavitation microstreaming. J. Acoust. Soc. Am. 31 (1), 5464.Google Scholar
Frenz, M., Könz, F., Pratisto, H., Weber, H. P., Silenok, A. S. & Konov, V. I. 1998 Starting mechanisms and dynamics of bubble formation induced by a Ho:yttrium aluminum garnet laser in water. J. Appl. Phys. 84 (11), 59055912.Google Scholar
Gerstman, B. S., Thompson, C. R., Jacques, S. L. & Rogers, M. E. 1995 Laser-induced bubble formation in the retina. In Photonics West’95, pp. 6071. International Society for Optics and Photonics.Google Scholar
Glezer, A. & Amitay, M. 2002 Synthetic jets. Annu. Rev. Fluid Mech. 34 (1), 503529.Google Scholar
Han, B., Köhler, K., Jungnickel, K., Mettin, R., Lauterborn, W. & Vogel, A. 2015 Dynamics of laser-induced bubble pairs. J. Fluid Mech. 771, 706742.CrossRefGoogle Scholar
Hashmi, A., Yu, G., Reilly-Collette, M., Heiman, G. & Xu, J. 2012 Oscillating bubbles: a versatile tool for lab on a chip applications. Lab on a Chip 12 (21), 42164227.Google Scholar
Jean, B. & Bende, T. 2003 Mid-IR laser applications in medicine. In Solid-State Mid-Infrared Laser Sources, pp. 530565. Springer.Google Scholar
Kang, H. W., Lee, H., Teichman, J. M., Oh, J., Kim, J. & Welch, A. J. 2006 Dependence of calculus retropulsion on pulse duration during Ho:YAG laser lithotripsy. Laser Surg. Med. 38 (8), 762772.Google Scholar
Ko, S. H., Lee, S. J. & Kang, K. H. 2009 A synthetic jet produced by electrowetting-driven bubble oscillations in aqueous solution. Appl. Phys. Lett. 94 (19), 194102.Google Scholar
Kodama, T. & Tomita, Y. 2000 Cavitation bubble behavior and bubble–shock wave interaction near a gelatin surface as a study of in vivo bubble dynamics. Appl. Phys. B 70 (1), 139149.Google Scholar
Lauterborn, W. & Vogel, A. 2013 Shock wave emission by laser generated bubbles. In Bubble Dynamics and Shock Waves, pp. 67103. Springer.Google Scholar
Li, F., Gonzalez-Avila, S. R., Nguyen, D. M. & Ohl, C.-D. 2017 Oscillate boiling from microheaters. Phys. Rev. Fluids 2 (1), 014007.Google Scholar
Liu, R. H., Yang, J., Pindera, M. Z., Athavale, M. & Grodzinski, P. 2002 Bubble-induced acoustic micromixing. Lab on a Chip 2 (3), 151157.Google Scholar
Longuet-Higgins, M. S. 1998 Viscous Streaming from an Oscillating Spherical Bubble, vol. 454, pp. 725742. The Royal Society.Google Scholar
Mallinson, S. G., Reizes, J. A. & Hong, G. 2001 An experimental and numerical study of synthetic jet flow. Aeronaut. J. 105 (1043), 4149.Google Scholar
Marmottant, P. & Hilgenfeldt, S. 2003 Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423 (6936), 153156.CrossRefGoogle ScholarPubMed
Marmottant, P., Raven, J. P., Gardeniers, H. J. G. E., Bomer, J. G. & Hilgenfeldt, S. 2006 Microfluidics with ultrasound-driven bubbles. J. Fluid Mech. 568, 109118.Google Scholar
Mohammadzadeh, M., Chan, W., Gonzalez-Avila, S. R., Liu, K., Wang, Q. J. & Ohl, C.-D. 2016 Bubble formation with a high repetition rate pulsed Tm laser. In Proceedings of The 20th Australasian Fluid Mechanics Conference ISBN: 978-1-74052-377-6 http://people.eng.unimelb.edu.au/imarusic/proceedings/20%20AFMC%20TOC.htm.Google Scholar
Mohammadzadeh, M., Mercado, J. M. & Ohl, C. D. 2015 Bubble dynamics in laser lithotripsy. In Journal of Physics Conference Series, vol. 656, p. 012004. IOP Publishing.Google Scholar
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.Google Scholar
Pratisto, H., Frenz, M., Ith, M., Altermatt, H. J., Jansen, E. D. & Weber, H. P. 1996 Combination of fiber-guided pulsed erbium and holmium laser radiation for tissue ablation under water. Appl. Opt. 35 (19), 33283337.Google Scholar
Rajaratnam, N. 1976 Turbulent Jets, vol. 5. Elsevier.Google Scholar
Reuter, F., Gonzalez-Avila, S. R., Mettin, R. & Ohl, C.-D. 2017 Flow fields and vortex dynamics of bubbles collapsing near a solid boundary. Phys. Rev. Fluids 2, 064202.Google Scholar
Riley, N. 2001 Steady streaming. Annu. Rev. Fluid Mech. 33 (1), 4365.Google Scholar
Rogers, P. & Neild, A. 2011 Selective particle trapping using an oscillating microbubble. Lab on a Chip 11 (21), 37103715.CrossRefGoogle ScholarPubMed
Schlichting, H. & Gersten, K. 2017 Boundary-Layer Theory. Springer.Google Scholar
Smith, B. L. & Swift, G. W. 2003 A comparison between synthetic jets and continuous jets. Exp. Fluids 34 (4), 467472.Google Scholar
Tang, Y., Li, X., Yan, Z., Yu, X., Zhang, Y. & Wang, Q. J. 2014 50-W 2-μm nanosecond all-fiber-based thulium-doped fiber amplifier. IEEE J. Sel. Top. Quant. 20 (5), 537543.Google Scholar
Tezel, A. & Mitragotri, S. 2003 Interactions of inertial cavitation bubbles with stratum corneum lipid bilayers during low-frequency sonophoresis. Biophys. J. 85 (6), 35023512.Google Scholar
Thielicke, W. & Stamhuis, E. 2014 PIVLab – towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2 (1), e30.CrossRefGoogle Scholar
Tho, P., Manasseh, R. & Ooi, A. 2007 Cavitation microstreaming patterns in single and multiple bubble systems. J. Fluid Mech. 576, 191233.Google Scholar
Tomita, Y., Sato, K. & Shima, A. 1994 Interaction of two laser-produced cavitation bubbles near boundaries. In Bubble Dynamics and Interface Phenomena, pp. 3345. Springer.CrossRefGoogle Scholar
Tong, R. P., Schiffers, W. P., Shaw, S. J., Blake, J. R. & Emmony, D. C. 1999 The role of splashing in the collapse of a laser-generated cavity near a rigid boundary. J. Fluid Mech. 380, 339361.Google Scholar
Vassar, G. J., Chan, K. F., Teichman, J. M. H., Glickman, R. D., Weintraub, S. T., Pfefer, T. J. & Welch, A. J. 1999 Holmium:YAG lithotripsy: photothermal mechanism. J. Endourol. 13 (3), 181190.Google Scholar
Vogel, A., Hentschel, W., Holzfuss, J. & Lauterborn, W. 1986 Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed neodymium:YAG lasers. Ophthalmology 93 (10), 12591269.Google Scholar
Vogel, A., Lauterborn, W. & Timm, R. 1989 Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299338.Google Scholar
Vogel, A. & Venugopalan, V. 2003 Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103 (2), 577644.Google Scholar
Yuan, F., Sankin, G. & Zhong, P. 2011 Dynamics of tandem bubble interaction in a microfluidic channel. J. Acoust. Soc. Am. 130 (5), 33393346.Google Scholar
Zhang, S. & Duncan, J. H. 1994 On the nonspherical collapse and rebound of a cavitation bubble. Phys. Fluids 6 (7), 23522362.Google Scholar
Zhang, S., Duncan, J. H. & Chahine, G. L. 1993 The final stage of the collapse of a cavitation bubble near a rigid wall. J. Fluid Mech. 257, 147181.Google Scholar
Zwaan, E., Le Gac, S., Tsuji, K. & Ohl, C.-D. 2007 Controlled cavitation in microfluidic systems. Phys. Rev. Lett. 98, 254501.Google Scholar

Mohammadzadeh et al. supplementary movie

Motion of fluorescent microparticles due to high-frequency cavitation on a fibre optic tip. A complex flow field is observed near the tip, with particles going back and forth as bubbles form and collapse. The particles are radially attracted toward the fibre axis, driving a jet that is directed away from the cavitation site. The laser is running at 40 kHz and 20 W.

Download Mohammadzadeh et al. supplementary movie(Video)
Video 4.4 MB

Mohammadzadeh et al. supplementary movie

Bubble formation at the tip of a fibre optic that delivers a pulsed laser at a repetition rate of f=40kHz into water. From top to bottom, the average laser power P=2.5, 5, 10, and 15W. At low laser power, the bubble collapses before the next laser pulse. However, by increasing the laser power, the bubble grows large enough such that it has not collapsed when the next laser pulse arrives. This leads to formation of a secondary bubble at the tip of the initial bubble, which moves away from the fibre tip as it collapses.

Download Mohammadzadeh et al. supplementary movie(Video)
Video 4.2 MB