Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T03:23:10.622Z Has data issue: false hasContentIssue false

Synchronization of flexible sheets

Published online by Cambridge University Press:  22 March 2011

GWYNN J. ELFRING
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA
ERIC LAUGA*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA
*
Email address for correspondence: [email protected]

Abstract

When swimming in close proximity, some microorganisms such as spermatozoa synchronize their flagella. Previous work on swimming sheets showed that such synchronization requires a geometrical asymmetry in the flagellar waveforms. Here we inquire about a physical mechanism responsible for such symmetry breaking in nature. Using a two-dimensional model, we demonstrate that flexible sheets with symmetric internal forcing deform when interacting with each other via a thin fluid layer in such a way as to systematically break the overall waveform symmetry, thereby always evolving to an in-phase conformation where energy dissipation is minimized. This dynamics is shown to be mathematically equivalent to that obtained for prescribed waveforms in viscoelastic fluids, emphasizing the crucial role of elasticity in symmetry breaking and synchronization.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Argentina, M., Skotheim, J. & Mahadevan, L. 2007 Settling and swimming of flexible fluid-lubricated foils. Phys. Rev. Lett. 99, 224503.CrossRefGoogle ScholarPubMed
Balmforth, N. J., Coombs, D. & Pachmann, S. 2010 Microelastohydrodynamics of swimming organisms near solid boundaries in complex fluids. Q. J. Mech. Appl. Math. 63, 267294.CrossRefGoogle Scholar
Camalet, S. & Jülicher, F. 2000 Generic aspects of axonemal beating. New J. Phys. 2, 24.CrossRefGoogle Scholar
Camalet, S., Jülicher, F. & Prost, J. 1999 Self-organized beating and swimming of internally driven filaments. Phys. Rev. Lett. 82, 15901593.CrossRefGoogle Scholar
Dreyfus, R., Baudry, J., Roper, M. L., Fermigier, M., Stone, H. A. & Bibette, J. 2005 Microscopic artificial swimmers. Nature 437, 862865.CrossRefGoogle ScholarPubMed
Elfring, G. J. & Lauga, E. 2009 Hydrodynamic phase locking of swimming microorganisms. Phys. Rev. Lett. 103, 088101.CrossRefGoogle ScholarPubMed
Elfring, G. J. & Lauga, E. 2011 Passive hydrodynamic synchronization of two-dimensional swimming cells. Phys. Fluids 23, 011902.CrossRefGoogle Scholar
Elfring, G. J., Pak, O. S. & Lauga, E. 2010 Two-dimensional flagellar synchronization in viscoelastic fluids. J. Fluid Mech. 646, 505515.CrossRefGoogle Scholar
Fauci, L. J. 1990 Interaction of oscillating filaments: a computational study. J. Comput. Phys. 86, 294313.CrossRefGoogle Scholar
Fauci, L. J. & McDonald, A. 1995 Sperm motility in the presence of boundaries. Bull. Math. Biol. 57, 679699.CrossRefGoogle ScholarPubMed
Golestanian, R., Yeomans, J. M. & Uchida, N. 2011 Hydrodynamic synchronization at low Reynolds number. Soft Matt. (Advance Article, doi: 10.1039/C0SM01121E).CrossRefGoogle Scholar
Hayashi, F. 1998 Sperm co-operation in the fishfly, parachauliodes japonicus. Funct. Ecol. 12, 347350.CrossRefGoogle Scholar
Hosoi, A. E. & Mahadevan, L. 2004 Peeling, healing, and bursting in a lubricated elastic sheet. Phys. Rev. Lett. 93, 137802.CrossRefGoogle Scholar
Kim, M. & Powers, T. R. 2004 Hydrodynamic interactions between rotating helices. Phys. Rev. E 69, 061910.CrossRefGoogle ScholarPubMed
Landau, L. D. & Lifshitz, E. M. 1986 Theory of Elasticity: Vol. 7 of Course of Theoretical Physics. Butterworth-Heinemann.Google Scholar
Lauga, E. 2007 Propulsion in a viscoelastic fluid. Phys. Fluids 19, 083104.CrossRefGoogle Scholar
Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601.CrossRefGoogle Scholar
Machin, K. E. 1958 Wave propagation along flagella. J. Exp. Biol. 35, 796806.CrossRefGoogle Scholar
Niedermayer, T., Eckhardt, B. & Lenz, P. 2008 Synchronization, phase locking, and metachronal wave formation in ciliary chains. Chaos: An Interdisciplinary J. Nonlinear Sci. 18, 037128.CrossRefGoogle ScholarPubMed
Pooley, C. M., Alexander, G. P. & Yeomans, J. M. 2007 Hydrodynamic interaction between two swimmers at low Reynolds number. Phys. Rev. Lett. 99, 228103.CrossRefGoogle ScholarPubMed
Purcell, E. M. 1977 Life at low Reynolds number. Am. J. Phys. 45, 311.CrossRefGoogle Scholar
Putz, V. B. & Yeomans, J. M. 2009 Hydrodynamic synchronisation of model microswimmers. J. Stat. Phys. 137, 10011013.CrossRefGoogle Scholar
Qian, B., Jiang, H., Gagnon, D. A., Breuer, K. S. & Powers, T. R. 2009 Minimal model for synchronization induced by hydrodynamic interactions. Phys. Rev. E 80, 061919.CrossRefGoogle ScholarPubMed
Reichert, M. & Stark, H. 2005 Synchronization of rotating helices by hydrodynamic interactions. Eur. Phys. J. E 17, 493500.CrossRefGoogle ScholarPubMed
Reynolds, O. 1886 On the lheory of lubrication and its application to Mr. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil. Phil. Trans. R. Soc. Lond. 177, 157234.Google Scholar
Riedel, I. H., Kruse, K. & Howard, J. 2005 A self-organized vortex array of hydrodynamically entrained sperm cells. Science 309, 300303.CrossRefGoogle ScholarPubMed
Riedel-Kruse, I. H., Hilfinger, A., Howard, J. & Jülicher, F. 2007 How molecular motors shape the flagellar beat. HFSP J. 1, 192208.CrossRefGoogle ScholarPubMed
Suarez, S. S. & Pacey, A. A. 2006 Sperm transport in the female reproductive tract. Human Reprod. Update 12, 2337.CrossRefGoogle ScholarPubMed
Taylor, G. I. 1951 Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. A 209, 447461.Google Scholar
Uchida, N. & Golestanian, R. 2011 Generic conditions for hydrodynamic synchronization. Phys. Rev. Lett. 106, 058104.CrossRefGoogle ScholarPubMed
Wiggins, C. H. & Goldstein, R. E. 1998 Flexive and propulsive dynamics of elastica at low Reynolds number. Phys. Rev. Lett. 80, 38793882.CrossRefGoogle Scholar
Woolley, D. M., Crockett, R. F., Groom, W. D. I. & Revell, S. G. 2009 A study of synchronisation between the flagella of bull spermatozoa, with related observations. J. Exp. Biol. 212, 22152223.CrossRefGoogle ScholarPubMed
Yang, Y., Elgeti, J. & Gompper, G. 2008 Cooperation of sperm in two dimensions: synchronization, attraction, and aggregation through hydrodynamic interactions. Phys. Rev. E 78, 061903.CrossRefGoogle ScholarPubMed
Yu, T. S., Lauga, E. & Hosoi, A. E. 2006 Experimental investigations of elastic tail propulsion at low Reynolds number. Phys. Fluids 18, 091701.CrossRefGoogle Scholar