Article contents
Swirling flow states of compressible single-phase supercritical fluids in a rotating finite-length straight circular pipe
Published online by Cambridge University Press: 21 June 2018
Abstract
Steady states of inviscid, compressible and axisymmetric swirling flows of a single-phase, inert, thermodynamically supercritical fluid in a rotating, finite-length, straight, long circular pipe are studied. The fluid thermodynamic behaviour is modelled by the van der Waals equation of state. A nonlinear partial differential equation for the solution of the flow streamfunction is derived from the fluid equations of motion in terms of the inlet flow specific total enthalpy, specific entropy and circulation functions. This equation reflects the complicated, nonlinear thermo-physical interactions in the flows, specifically when the inlet state temperature and density profiles vary around the critical thermodynamic point, flow compressibility is significant and the inlet swirl ratio is high. Several types of solutions of the resulting nonlinear ordinary differential equation for the axially independent case describe the flow outlet state when the pipe is sufficiently long. The approach is applied to an inlet flow described by a solid-body rotation with uniform profiles of the axial velocity and temperature. The solutions are used to form the bifurcation diagrams of steady compressible flows of real fluids as the inlet swirl level and the centreline inlet density are increased at a fixed inlet Mach number and temperature. Focus is on heavy-molecule fluids with low values of $R/C_{v}$. Computed results provide theoretical predictions of the critical swirl levels for the exchange of stability of the columnar state and for the appearance of non-columnar states and of vortex breakdown states as a function of inlet centreline density. The difference in the dynamical behaviour between that of a calorically perfect gas and of a real gas is explored. The analysis sheds new fundamental light on the complex dynamics of high-Reynolds-number, compressible, subsonic swirling flows of real gases.
- Type
- JFM Papers
- Information
- Copyright
- © 2018 Cambridge University Press
References
- 4
- Cited by