Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T05:35:46.580Z Has data issue: false hasContentIssue false

Suspensions of prolate spheroids in Stokes flow. Part 3. Hydrodynamic transport properties of crystalline dispersions

Published online by Cambridge University Press:  26 April 2006

Ivan L. Claeys
Affiliation:
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA Present address: Solvay Research & Technology, rue de Ransbeek 310, 1120 Brussels, Belgium.
John F. Brady
Affiliation:
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA

Abstract

The short-time limit of the hydrodynamic transport properties is calculated for crystalline dispersions of parallel prolate spheroids using a moment expansion technique similar in concept to the simulation method known as Stokesian dynamics. The concentration dependence of the sedimentation rate, the hindered diffusivity and the Theological behaviour of face-centred lattices are examined for concentrations up to regular close packing (74% by volume). The influence of the detailed microstructure of the dispersion is also investigated by considering different arrangements of parallel ellipsoids. Useful reference configurations are proposed as standard geometries for regular arrays of prolate spheroids.

Type
Research Article
Copyright
© 1993 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M. P., Frenkel, D. & Talbot, J. 1989 Comput. Phys. Rep. 9, 301353.
Batchelor, G. K. 1970 J. Fluid Mech. 41, 545570.
Batchelor, G. K. 1971 J. Fluid Mech. 46, 813829.
bitsanis, I., Davis, H. T. & Tirrell, M. 1988 Macromol. 21, 28242835.
Bitsanis, I., Davis, H. T. & Tirrell, M. 1990 Macromol. 23, 11571165.
Brady, J. F. & Bossis, G. 1988 Ann. Rev. Fluid Mech. 20, 111157.
Brady, J. F., Phillips, R. J., Lester, J. C. & Bossis, G. 1988 J. Fluid Mech. 195, 257280.
Chwang, A. T. & Wu, T. Y.-T. 1975 J. Fluid Mech. 67, 787815.
Claeys, I. L. & Brady, J. F. 1989 PhysicoChem. Hydrodyn. 11, 261293.
Claeys, I. L. & Brady, J. F. 1993a J. Fluid Mech. 251, 411442.
Claeys, I. L. & Brady, J. F. 1993b J. Fluid Mech. 251, 443477.
Frenkel, D. 1987 Molec. Phys. 60, 120.
Frenkel, D. & Mulder, B. M. 1985 Molec. Phys. 55, 11711192.
Frenkel, D., Mulder, B. M. & McTague, J. P. 1984 Phys. Rev. Lett. 52, 287290.
Gruber, P. M. & Lekkerkerker, C. G. 1987 Geometry of Numbers. North-Holland.
Hasimoto, H. 1959 J. Fluid Mech. 5, 317328.
Hinch, E. J. 1972 J. Fluid Mech. 54, 423425.
Kim, S. 1986 Intl J. Multiphase Flow 12, 469491.
Ladd, A. J. C. 1988 J. Chem. Phys. 88, 50515063.
Ladd, A. J. C. 1990 J. Chem. Phys. 93, 34843494.
Lam, J. 1990 J. Appl. Phys. 68, 392403.
Mewis, J. & Metzner, A. B. 1974 J. Fluid Mech. 62, 593600.
Nunan, K. C. & Keller, J. B. 1984 J. Fluid Mech. 142, 269287.
Onsager, L. 1949 Ann. N.Y. Acad. Sci. 51, 627659.
Phillips, R. J., Brady, J. F. & Bossis, G. 1988 Phys. Fluids 31, 34623472.
Shaqfeh, E. S. G. & Fredrickson, G. H. 1990 Phys. Fluids A 2, 724.
Talbot, J., Kivelson, D., Allen, M. P., Evans, G. T. & Frenkel, D. 1990 J. Chem. Phys. 92, 30483057.
Zick, A. A. & Homsy, G. M. 1982 J. Fluid Mech. 115, 1326.
Zuzovsky, M., Adler, P. M. & Brenner, H. 1983 Phys. Fluids 26, 17141723.