Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T17:22:40.307Z Has data issue: false hasContentIssue false

Suspensions in a tilted trough: second normal stress difference

Published online by Cambridge University Press:  21 September 2011

Étienne Couturier
Affiliation:
IUSTI-CNRS UMR 6595, Polytech-Marseille, Aix-Marseille Université (U1), Technopôle de Château-Gombert, 13453 Marseille CEDEX 13, France
François Boyer*
Affiliation:
IUSTI-CNRS UMR 6595, Polytech-Marseille, Aix-Marseille Université (U1), Technopôle de Château-Gombert, 13453 Marseille CEDEX 13, France
Olivier Pouliquen
Affiliation:
IUSTI-CNRS UMR 6595, Polytech-Marseille, Aix-Marseille Université (U1), Technopôle de Château-Gombert, 13453 Marseille CEDEX 13, France
Élisabeth Guazzelli
Affiliation:
IUSTI-CNRS UMR 6595, Polytech-Marseille, Aix-Marseille Université (U1), Technopôle de Château-Gombert, 13453 Marseille CEDEX 13, France
*
Email address for correspondence: [email protected]

Abstract

We measure the second normal-stress difference in suspensions of non-Brownian neutrally buoyant rigid spheres dispersed in a Newtonian fluid. We use a method inspired by Wineman & Pipkin (Acta Mechanica, vol. 2, 1966, pp. 104–115) and Tanner (Trans. Soc. Rheol., vol. 14, 1970, pp. 483–507), which relies on the examination of the shape of the suspension free surface in a tilted trough flow. The second normal-stress difference is found to be negative and linear in shear stress. The ratio of the second normal-stress difference to shear stress increases with increasing volume fraction. A clear behavioural change exhibiting a strong (approximately linear) growth in the magnitude of this ratio with volume fraction is seen above a volume fraction of 0.22. By comparing our results with previous data obtained for the same batch of spheres by Boyer, Pouliquen & Guazzeli (J. Fluid Mech., 2011, doi:10.1017/jfm.2011.272), the ratio of the first normal-stress difference to the shear stress is estimated and its magnitude is found to be very small.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arp, A. P. & Mason, S. G. 1977 The kinetics of flowing dispersions. IX. Doublets of rigid spheres (experimental). J. Colloid Interface Sci. 61, 4461.CrossRefGoogle Scholar
2. Batchelor, G. K. & Green, J. T. 1972 The determination of the bulk stress in a suspension of spherical particles to order c 2 . J. Fluid Mech. 56, 401427.CrossRefGoogle Scholar
3. Beavers, G. S. & Joseph, D. D. 1975 The rotating-rod viscometer. J. Fluid Mech. 69, 475512.CrossRefGoogle Scholar
4. Bird, R. B., Armstrong, R. C. & Hassager, O. 1987 Dynamics of Polymeric Liquids, 2nd edn. Fluid Dynamics , vol. 1. John Wiley & Sons.Google Scholar
5. Boyer, F., Pouliquen, O. & Guazzelli, E. 2011 Dense suspensions in rotating-rod flows: normal stresses and particle migration. J. Fluid Mech. 686, 525.CrossRefGoogle Scholar
6. Brady, J. F & Carpen, I. C. 2001 Second normal stress jump instability in non-Newtonian fluids. J. Non-Newtonian Fluid Mech. 2075, 114.Google Scholar
7. Brady, J. F & Morris, J. F. 1997 Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J. Fluid Mech. 348, 103139.CrossRefGoogle Scholar
8. Davis, R. H. 1992 Effects of surface roughness on a sphere sedimenting through a dilute suspension of neutrally buoyant spheres. Phys. Fluids A 4, 26072619.CrossRefGoogle Scholar
9. Gadala-Maria, F. 1979 The rheology of concentrated suspensions. PhD thesis, Stanford University.Google Scholar
10. Leighton, D. T. & Acrivos, A. 1987 The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181, 415439.CrossRefGoogle Scholar
11. Morris, J. F. & Boulay, F. 1999 Curvilinear flows of non-colloidal suspensions: the role of normal stresses. J. Rheol. 43, 12131237.CrossRefGoogle Scholar
12. Parsi, F. & Gadala-Maria, F. 1987 Fore-and-aft asymmetry in a concentrated suspension of solid spheres. J. Rheol. 31, 725732.CrossRefGoogle Scholar
13. Press, W. H., Teukolsky, S. A., FlanneryB. , P. B. , P. & Vetterling, W. T. 2007 Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press.Google Scholar
14. Ramachandran, A. & Leighton, D. T. 2008 The influence of secondary flows induced by normal stress differences on the shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 603, 207243.CrossRefGoogle Scholar
15. Rampall, I., Smart, J. R. & Leighton, D. T. 1997 The influence of surface roughness on the particle-pair distribution function of dilute suspensions of non-colloidal spheres in simple shear flow. J. Fluid Mech. 339, 124.CrossRefGoogle Scholar
16. Sierou, A. & Brady, J. F. 2002 Rheology and microstructure in concentrated non-colloidal suspensions. J. Rheol. 46, 10311056.CrossRefGoogle Scholar
17. Singh, A. & Nott, P. R. 2000 Normal stresses and microstructure in bounded sheared suspensions via Stokesian dynamics simulations. J. Fluid Mech. 412, 279301.CrossRefGoogle Scholar
18. Singh, A. & Nott, P. R. 2003 Experimental measurements of the normal stresses in sheared Stokesian suspensions. J. Fluid Mech. 490, 293320.CrossRefGoogle Scholar
19. Stickel, J. J. & Powell, R. L. 2005 Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech. 37, 129149.CrossRefGoogle Scholar
20. Tanner, R. I. 1970 Some methods for estimating the normal stress functions in viscometric flows. Trans. Soc. Rheol. 14 (4), 483507.CrossRefGoogle Scholar
21. Wilson, H. J. 2005 An analytic form for the pair distribution function and rheology of a dilute suspension of rough spheres in plane strain flow. J. Fluid Mech. 534, 97114.CrossRefGoogle Scholar
22. Wineman, A. & Pipkin, A. 1966 Slow viscoelastic flow in tilted troughs. Acta Mechanica 2, 104115.CrossRefGoogle Scholar
23. Zarraga, I. E., Hill, D. A. & Leighton, D. T. 2000 The characterization of the total stress of concentrated suspensions of non-colloidal spheres in Newtonian fluids. J. Rheol. 44, 185220.CrossRefGoogle Scholar

Couturier et al. supplementary movie

Movie 1. Evolution of the free surface deflection of a suspension flowing down a tilted trough using the projection of 9 laser sheets. A characteristic steady triangular convex shape is rapidly obtained. Suspension of polystyrene spheres (having a radius a = 35 μm) in poly(ethylene glycol-ran-propylene glycol) monobutylether (with density closely matched to that of the particles ρf = 1.051 g.cm-3 and large viscosity ηf = 2.15 Pa.s at 25°C) at a volume fraction φ = 0.5. Parallel-sided channel of width W = 3 cm tilted at an angle θ = 21.3°. Movie accelerated 15x over real time (64s).

Download Couturier et al. supplementary movie(Video)
Video 8.6 MB