Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T20:26:33.009Z Has data issue: false hasContentIssue false

Surface layer response to heterogeneous tree canopy distributions: roughness regime regulates secondary flow polarity

Published online by Cambridge University Press:  08 August 2022

P. Joshi
Affiliation:
Department of Mechanical Engineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
W. Anderson*
Affiliation:
Department of Mechanical Engineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
*
Email address for correspondence: [email protected]

Abstract

Large-eddy simulation was used to model turbulent atmospheric surface layer (ASL) flow over canopies composed of streamwise-aligned rows of synthetic trees of height, $h$, and systematically arranged to quantify the response to variable streamwise spacing, $\delta _1$, and spanwise spacing, $\delta _2$, between adjacent trees. The response to spanwise and streamwise heterogeneity has, indeed, been the topic of a sustained research effort: the former resulting in formation of Reynolds-averaged counter-rotating secondary cells, the latter associated with the $k$- and $d$-type response. No study has addressed the confluence of both, and results herein show secondary flow polarity reversal across ‘critical’ values of $\delta _1$ and $\delta _2$. For $\delta _2/\delta \lesssim 1$ and $\gtrsim 2$, where $\delta$ is the flow depth, the counter-rotating secondary cells are aligned such that upwelling and downwelling, respectively, occurs above the elements. The streamwise spacing $\delta _1$ regulates this transition, with secondary cell reversal occurring first for the largest $k$-type cases, as elevated turbulence production within the canopy necessitates entrainment of fluid from aloft. The results are interpreted through the lens of a benchmark prognostic closure for effective aerodynamic roughness, $z_{0,{Eff.}} = \alpha \sigma _h$, where $\alpha$ is a proportionality constant and $\sigma _h$ is height root mean square. We report $\alpha \approx 10^{-1}$, the value reported over many decades for a broad range of rough surfaces, for $k$-type cases at small $\delta _2$, whereas the transition to $d$-type arrangements necessitates larger $\delta _2$. Though preliminary, results highlight the non-trivial response to variation of streamwise and spanwise spacing.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, W. 2012 An immersed boundary method wall model for high-Reynolds number channel flow over complex topography. Intl J. Numer. Meth. Fluids 71, 15881608.10.1002/fld.3727CrossRefGoogle Scholar
Anderson, W. 2019 Non-periodic phase-space trajectories of roughness-driven secondary flows in high-$Re_\tau$ boundary layers and channels. J. Fluid Mech. 869, 2784.10.1017/jfm.2019.244CrossRefGoogle Scholar
Anderson, W., Barros, J.M., Christensen, K.T. & Awasthi, A. 2015 a Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness. J. Fluid Mech. 768, 316347.10.1017/jfm.2015.91CrossRefGoogle Scholar
Anderson, W., Li, Q. & Bou-Zeid, E. 2015 b Numerical simulation of flow over urban-like topographies and evaluation of turbulence temporal attributes. J. Turbul. 16, 809831.10.1080/14685248.2015.1031241CrossRefGoogle Scholar
Anderson, W. & Meneveau, C. 2010 a A large-eddy simulation model for boundary-layer flow over surfaces with horizontally resolved but vertically unresolved roughness elements. Boundary-Layer Meteorol. 137, 397415.10.1007/s10546-010-9537-5CrossRefGoogle Scholar
Anderson, W. & Meneveau, C. 2010 b A large-eddy simulation model for boundary-layer flow over surfaces with horizontally resolved but vertically unresolved roughness elements. Boundary-Layer Meteorol. 137, 397415.10.1007/s10546-010-9537-5CrossRefGoogle Scholar
Anderson, W. & Meneveau, C. 2011 A dynamic large-eddy simulation model for boundary layer flow over multiscale, fractal-like surfaces. J. Fluid Mech. 679, 288314.10.1017/jfm.2011.137CrossRefGoogle Scholar
Anderson, W., Yang, J., Shrestha, K. & Awasthi, A. 2018 Turbulent secondary flows in wall turbulence: vortex forcing, scaling arguments, and similarity solution. Environ. Fluid Mech. 18, 13511378.10.1007/s10652-018-9596-6CrossRefGoogle Scholar
Antonia, R.A. & Luxton, R.E. 1971 The response of a turbulent boundary layer to a step change in surface roughness. Part I. Smooth to rough. J. Fluid Mech. 48, 721761.10.1017/S0022112071001824CrossRefGoogle Scholar
Awasthi, A. & Anderson, W. 2018 Numerical study of turbulent channel flow perturbed by spanwise topographic heterogeneity: amplitude and frequency modulation within low-and high-momentum pathways. Phys. Rev. Fluids 3, 044602.10.1103/PhysRevFluids.3.044602CrossRefGoogle Scholar
Bai, K., Katz, J. & Meneveau, C. 2015 Turbulent flow structure inside a canopy with complex multi-scale elements. Boundary-Layer Meteorol. 155, 435457.10.1007/s10546-015-0011-2CrossRefGoogle Scholar
Bailey, B.N. & Stoll, R. 2013 Turbulence in sparse, organized vegetative canopies: a large-eddy simulation study. Boundary-Layer Meteorol. 147, 369400.10.1007/s10546-012-9796-4CrossRefGoogle Scholar
Bailey, B.N. & Stoll, R. 2016 The creation and evolution of coherent structures in plant canopy flows and their role in turbulent transport. J. Fluid Mech. 789, 425460.10.1017/jfm.2015.749CrossRefGoogle Scholar
Bailey, B.N., Stoll, R., Pardyjak, E.R. & Mahaffee, W.F. 2014 Effect of vegetative canopy architecture on vertical transport of massless particles. Atmos. Environ. 95, 480489.10.1016/j.atmosenv.2014.06.058CrossRefGoogle Scholar
Barros, J.M. & Christensen, K.T. 2014 Observations of turbulent secondary flows in a rough-wall boundary layer. J. Fluid Mech. 748, R1.10.1017/jfm.2014.218CrossRefGoogle Scholar
Belcher, S.E., Harman, I.N. & Finnigan, J.J. 2012 The wind in the willows: flows in forest canopies in complex terrain. Annu. Rev. Fluid Mech. 44, 479504.10.1146/annurev-fluid-120710-101036CrossRefGoogle Scholar
Belcher, S.E., Jerram, N. & Hunt, J.C.R. 2003 Adjustment of a turbulent boundary layer to a canopy of roughness elements. J. Fluid Mech. 488, 369398.10.1017/S0022112003005019CrossRefGoogle Scholar
Bou-Zeid, E., Anderson, W., Katul, G.G. & Mahrt, L. 2020 The persistent challenge of surface heterogeneity in boundary-layer meteorology: a review. Boundary-Layer Meteorol. 177, 227245.10.1007/s10546-020-00551-8CrossRefGoogle Scholar
Bou-Zeid, E., Meneveau, C. & Parlange, M.B. 2005 A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids 17, 025105.10.1063/1.1839152CrossRefGoogle Scholar
Bradshaw, P. 1987 Turbulent secondary flows. Annu. Rev. Fluid Mech. 19, 5374.10.1146/annurev.fl.19.010187.000413CrossRefGoogle Scholar
Bradshaw, P. 2003 Turbulent secondary flows. Annu. Rev. Fluid Mech. 19, 5374.10.1146/annurev.fl.19.010187.000413CrossRefGoogle Scholar
Brown, A.R., Hobson, J.M. & Wood, N. 2001 Large-eddy simulation of neutral turbulent flow over rough sinusoidal ridges. Boundary-Layer Meteorol. 98, 411441.10.1023/A:1018703209408CrossRefGoogle Scholar
Brundrett, E. & Baines, W.D. 1964 The production and diffusion of vorticity in duct flow. J. Fluid Mech. 19 (3), 375394.10.1017/S0022112064000799CrossRefGoogle Scholar
Calaf, M., Meneveau, C. & Meyers, J. 2010 Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys. Fluids 22, 015110.10.1063/1.3291077CrossRefGoogle Scholar
Castro, I.P. 2007 Rough-wall boundary layers: mean flow universality. J. Fluid Mech. 585, 469485.10.1017/S0022112007006921CrossRefGoogle Scholar
Chung, D., Hutchins, N., Schultz, M.P. & Flack, K.A. 2021 Predicting the drag of rough surfaces. Annu. Rev. Fluid Mech. 53, 439471.10.1146/annurev-fluid-062520-115127CrossRefGoogle Scholar
Finnigan, J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519571.10.1146/annurev.fluid.32.1.519CrossRefGoogle Scholar
Finnigan, J.J., Shaw, R.H. & Patton, E.G. 2009 Turbulence structure above a vegetation canopy. J. Fluid Mech. 637, 387424.10.1017/S0022112009990589CrossRefGoogle Scholar
Flack, K.A. & Schultz, M.P. 2010 Review of hydraulic roughness scales in the fully rough regime. Trans. ASME J. Fluids Engng 132 (4), 041203.10.1115/1.4001492CrossRefGoogle Scholar
Flack, K.A., Schultz, M.P. & Connelly, J.S. 2007 Examination of a critical roughness height for outer layer similarity. Phys. Fluids 19 (9), 095104.10.1063/1.2757708CrossRefGoogle Scholar
Garratt, J.R. 1994 The Atmospheric Boundary Layer. Cambridge University Press.Google Scholar
Gessner, F.B. 1973 The origin of secondary flow in turbulent flow along a corner. J. Fluid Mech. 58 (1), 125.10.1017/S0022112073002090CrossRefGoogle Scholar
Ghannam, K., Katul, G.G., Bou-Zeid, E., Gerken, T. & Chamecki, M. 2018 Scaling and similarity of the anisotropic coherent eddies in near-surface atmospheric turbulence. J. Atmos. Sci. 75, 943964.10.1175/JAS-D-17-0246.1CrossRefGoogle Scholar
Ghisalberti, M. 2009 Obstructed shear flows: similarities across systems and scales. J. Fluid Mech. 641, 51.10.1017/S0022112009992175CrossRefGoogle Scholar
Goldstein, D.B. & Tuan, T.-C. 1998 Secondary flow induced by riblets. J. Fluid Mech. 363, 115151.10.1017/S0022112098008921CrossRefGoogle Scholar
Graham, J. & Meneveau, C. 2012 Modeling turbulent flow over fractal trees using renormalized numerical simulation: alternate formulations and numerical experiments. Phys. Fluids 24, 125105.10.1063/1.4772074CrossRefGoogle Scholar
Grass, A.J. 1971 Structural features of turbulent flow over smooth and rough boundaries. J. Fluid Mech. 50, 233.10.1017/S0022112071002556CrossRefGoogle Scholar
Harmon, I. & Finnigan, J.J. 2007 A simple unified theory for flow in the canopy and roughness sublayer. Boundary-Layer Meteorol. 123, 339364.10.1007/s10546-006-9145-6CrossRefGoogle Scholar
Hinze, J.O. 1967 Secondary currents in wall turbulence. Phys. Fluids 10 (9), S122S125.10.1063/1.1762429CrossRefGoogle Scholar
Hoagland, L.C. 1960 Fully developed turbulent flow in straight rectangular ducts – secondary flow, its cause and effect on the primary flow. PhD thesis, Massachusetts Inst. of Tech.Google Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.10.1017/S0022112006003946CrossRefGoogle Scholar
Jimenez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.10.1146/annurev.fluid.36.050802.122103CrossRefGoogle Scholar
Kevin, K., Monty, J.P., Bai, H.L., Pathikonda, G., Nugroho, B., Barros, J.M., Christensen, K.T. & Hutchins, N. 2017 Cross-stream stereoscopic particle image velocimetry of a modified turbulent boundary layer over directional surface pattern. J. Fluid Mech. 813, 412435.10.1017/jfm.2016.879CrossRefGoogle Scholar
Macdonald, R., Griffiths, R. & Hall, D. 1998 An improved method for the estimation of surface roughness of obstacle arrays. Atmos. Environ. 32, 18571864.10.1016/S1352-2310(97)00403-2CrossRefGoogle Scholar
Medjnoun, T., Vanderwel, C. & Ganapathisubramani, B. 2018 Characteristics of turbulent boundary layers over smooth surfaces with spanwise heterogeneities. J. Fluid Mech. 838, 516543.10.1017/jfm.2017.849CrossRefGoogle Scholar
Medjnoun, T., Vanderwel, C. & Ganapathisubramani, B. 2020 Effects of heterogeneous surface geometry on secondary flows in turbulent boundary layers. J. Fluid Mech. 886, A31.10.1017/jfm.2019.1014CrossRefGoogle Scholar
Nugroho, B., Hutchins, N. & Monty, J.P. 2013 Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness. Intl J. Heat Fluid Flow 41, 90102.10.1016/j.ijheatfluidflow.2013.04.003CrossRefGoogle Scholar
Pan, Y. & Chamecki, M. 2016 A scaling law for the shear-production range of second-order structure functions. J. Fluid Mech. 801, 459474.10.1017/jfm.2016.427CrossRefGoogle Scholar
Pathikonda, G. & Christensen, K.T. 2017 Inner-outer interactions in a turbulent boundary layer overlying complex roughness. Phys. Rev. Fluids 2, 044603.10.1103/PhysRevFluids.2.044603CrossRefGoogle Scholar
Perkins, H.J. 1970 The formation of streamwise vorticity in turbulent flow. J. Fluid Mech. 44 (4), 721740.10.1017/S0022112070002112CrossRefGoogle Scholar
Perry, A.E., Schofield, W.H. & Joubert, P. 1969 Rough wall turbulent boundary layers. J. Fluid Mech. 37, 383413.10.1017/S0022112069000619CrossRefGoogle Scholar
Prandtl, L. 1952 Essentials of Fluid Dynamics. Blackie and Son.Google Scholar
Raupach, M.R., Antonia, R.A. & Rajagopalan, S. 1991 Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44, 125.10.1115/1.3119492CrossRefGoogle Scholar
Raupach, M.R., Finnigan, J.J. & Brunet, Y. 1996 Coherent eddies and turbulence in vegetation canopies: the mixing layer analogy. Boundary-Layer Meteorol. 78, 351382.10.1007/BF00120941CrossRefGoogle Scholar
Salesky, S.T., Calaf, M. & Anderson, W. 2022 Unstable turbulent channel flow response to spanwise-heterogeneous heat fluxes: Prandtl's secondary flow of the third kind. J. Fluid Mech. 934, A46.10.1017/jfm.2022.15CrossRefGoogle Scholar
Shaw, R.H. & Schumann, U. 1992 Large-eddy simulation of turbulent flow above and within a forest. Boundary-Layer Meteorol. 61, 4764.10.1007/BF02033994CrossRefGoogle Scholar
Stevens, R.J.A.M., Wilczek, M. & Meneveau, C. 2014 Large-eddy simulation study of the logarithmic law for second- and higher-order moments in turbulent wall-bounded flow. J. Fluid Mech. 757, 888907.10.1017/jfm.2014.510CrossRefGoogle Scholar
Stoll, R., Gibbs, J.A., Salesky, S.T., Anderson, W. & Calaf, M. 2020 Large-eddy simulation of the atmospheric boundary layer. Boundary-Layer Meteorol. 177, 541581.10.1007/s10546-020-00556-3CrossRefGoogle Scholar
Stroh, A., Schäfer, K., Frohnapfel, B. & Forooghi, P. 2020 Rearrangement of secondary flow over spanwise heterogeneous roughness. J. Fluid Mech. 885, R5.10.1017/jfm.2019.1030CrossRefGoogle Scholar
Su, H.-B., Shaw, R.H., Paw, U.K.T., Moeng, C.-H. & Sullivan, P.P. 1998 Turbulent statistics of neutrally stratified flow within and above a sparse forest from large-eddy simulation and field observation. Boundary-Layer Meteorol. 88, 367397.10.1023/A:1001108411184CrossRefGoogle Scholar
Townsend, A.A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Vanderwel, C. & Ganapathisubramani, B. 2015 Effects of spanwise spacing on large-scale secondary flows in rough-wall turbulent boundary layers. J. Fluid Mech. 774, R2.10.1017/jfm.2015.292CrossRefGoogle Scholar
Vermaas, D.A., Uijttewaal, W.S.J. & Hoitink, A.J.F. 2011 Lateral transfer of streamwise momentum caused by a roughness transition across a shallow channel. Water Resour. Res. 47 (2), w02530.10.1029/2010WR010138CrossRefGoogle Scholar
Wang, Z.-Q. & Cheng, N.-S. 2005 Secondary flows over artificial bed strips. Adv. Water Resour. 28 (5), 441450.10.1016/j.advwatres.2004.12.008CrossRefGoogle Scholar
Willingham, D., Anderson, W., Christensen, K.T. & Barros, J. 2013 Turbulent boundary layer flow over transverse aerodynamic roughness transitions: induced mixing and flow characterization. Phys. Fluids 26, 025111.10.1063/1.4864105CrossRefGoogle Scholar
Wyngaard, J.C. 2010 Turbulence in the Atmosphere. Cambridge University Press.10.1017/CBO9780511840524CrossRefGoogle Scholar
Yang, J. & Anderson, W. 2017 a Numerical study of turbulent channel flow over surfaces with variable spanwise heterogeneities: topographically-driven secondary flows affect outer-layer similarity of turbulent length scales. Flow Turbul. Combust. 100, 117.10.1007/s10494-017-9839-5CrossRefGoogle Scholar
Yang, J. & Anderson, W. 2017 b Turbulent channel flow over surfaces with variable spanwise heterogeneity: establishing conditions for outer-layer similarity. Flow Turbul. Combust. 100, 117.10.1007/s10494-017-9839-5CrossRefGoogle Scholar
Yang, X.I.A., Sadique, J., Mittal, R. & Meneveau, C. 2016 Exponential roughness layer and analytical model for turbulent boundary layer flow over rectangular-prism roughness elements. J. Fluid Mech. 789, 127165.10.1017/jfm.2015.687CrossRefGoogle Scholar
Zagarola, M.V. & Smits, A.J. 1998 Mean-flow scaling of turbulent pipe flow. J. Fluid Mech. 373, 3379.10.1017/S0022112098002419CrossRefGoogle Scholar
Zheng, Y. & Anderson, W. 2021 Flow-roughness heterogeneity: critical obliquity and salient parameters. J. Fluid Mech. 913, A12.10.1017/jfm.2020.1185CrossRefGoogle Scholar