Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T22:02:35.344Z Has data issue: false hasContentIssue false

A study of Mach wave radiation using active control

Published online by Cambridge University Press:  13 June 2011

M. KEARNEY-FISCHER
Affiliation:
Gas Dynamics and Turbulence Laboratory, Department of Mechanical and Aerospace Engineering, The Ohio State University, 2300 West Case Road, Columbus, OH 43235-7531, USA
J.-H. KIM
Affiliation:
Gas Dynamics and Turbulence Laboratory, Department of Mechanical and Aerospace Engineering, The Ohio State University, 2300 West Case Road, Columbus, OH 43235-7531, USA
M. SAMIMY*
Affiliation:
Gas Dynamics and Turbulence Laboratory, Department of Mechanical and Aerospace Engineering, The Ohio State University, 2300 West Case Road, Columbus, OH 43235-7531, USA
*
Email address for correspondence: [email protected]

Abstract

Mach wave radiation is one of the better understood sources of jet noise. However, the exact conditions of its onset are difficult to determine and the literature to date typically explores Mach wave radiation well above its onset conditions. In order to determine the conditions for the onset of Mach wave radiation and to explore its behaviour during onset and beyond, three ideally expanded jets with Mach numbers Mj = 0.9, 1.3 and 1.65 and stagnation temperature ratios ranging over To/T = 1.0–2.5 (acoustic Mach number 0.83–2.10) were used. Data are collected using a far-field microphone array, schlieren imaging and streamwise two-component particle image velocimetry. Using arc filament plasma actuators to force the jet provides an unprecedented tool for detailed examination of Mach wave radiation. The response of the jet to various forcing parameters (combinations of one azimuthal mode m = 0, 1 and 3 and one Strouhal number StDF = 0.09–3.0) is explored. Phase-averaged schlieren images clearly show the onset and evolution of Mach wave radiation in response to both changes in the jet operating conditions and forcing parameters. It is observed that Mach wave radiation is initiated as a coalescing of the near-field hydrodynamic pressure fluctuations in the immediate vicinity of the large-scale structures. As the jet exit velocity increases, the hydrodynamic pressure fluctuations coalesce, first into a curved wavefront, then flatten into the conical wavefronts commonly associated with Mach wave radiation. The results show that the largest and most coherent structures (e.g. forcing with m = 0 and StDF ~ 0.3) produce the strongest Mach wave radiation. Conversely, Mach wave radiation is weakest when the structures are the least coherent (e.g. forcing with m = 3 and StDF > 1.5).

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adamovich, I., Choi, I., Jiang, N., Kim, J.-H., Keshav, S., Lempert, W. R., Mintusov, E., Nishihara, M., Samimy, M. & Uddi, M. 2009 Plasma assisted ignition and high-speed flow control: non-thermal and thermal effects. Plasma Sources Sci. Technol. 18, 034018.CrossRefGoogle Scholar
Ahuja, K. K. & Blakney, D. F. 1985 Tone excited jets. IV – acoustic measurements. J. Sound Vib. 102 (1), 93117.CrossRefGoogle Scholar
Ahuja, K. K. & Whiffen, M. C. 1985 Tone excited jets. II – flow visualization. J. Sound Vib. 102 (1), 6369.CrossRefGoogle Scholar
ANSI 1995 Method for calculation of the absorption of sound by the atmosphere. American National Standards Institute S1.26-1995.Google Scholar
Avital, E. J., Sandham, N. D. & Luo, K. H. 1998 Mach wave radiation by mixing layers: Part I – Analysis of the sound field. Theor. Comput. Fluid Dyn. 12, 7390.CrossRefGoogle Scholar
Bechert, D. W. & Pfizenmaier, E. 1977 Amplification of jet noise by a higher-mode acoustical excitation. AIAA J. 15 (9), 12681271.CrossRefGoogle Scholar
Benard, N., Bonnet, J. P., Touchard, G. & Moreau, E. 2008 Flow control by dielectric barrier discharge actuators: jet mixing enhancement. AIAA J. 46 (9), 22932305.CrossRefGoogle Scholar
Bridges, J. 2006 Effect of heat on space–time correlations in jets. AIAA Paper 2006-2534.CrossRefGoogle Scholar
Callender, B., Gutmark, E. & Martens, S. 2004 Far-field acoustic investigation into Chevron nozzle mechanisms and trends. AIAA J. 43 (1), 8795.CrossRefGoogle Scholar
Cohen, J. & Wygnanski, I. 1987 The evolution of instabilities in the axisymmetric jet. Part 1: the linear growth of disturbances near nozzle. J. Fluid Mech. 176, 191219.CrossRefGoogle Scholar
Crow, S. C. & Champagne, F. H. 1971 Orderly structure in jet turbulences. J. Fluid Mech. 48 (3), 547591.CrossRefGoogle Scholar
Elliott, G. S., Samimy, M. & Arnette, S. A. 1995 The characteristics and evolution of large-scale structures in compressible mixing layers. Phys. Fluids 7 (4), 864876.CrossRefGoogle Scholar
Gaitonde, D. V. & Samimy, M. 2010 Effect of plasma-based azimuthal mode excitation on supersonic jet flow. AIAA Paper 2010-4416.CrossRefGoogle Scholar
Greska, B., Krothapalli, A., Horne, W. & Burnside, N. 2008 A near-field study of high temperature supersonic jets. AIAA Paper 2008-3026.CrossRefGoogle Scholar
Gutmark, E. & Ho, C. M. 1983 Preferred modes and the spreading rated of jets. Phys. Fluids 26 (10), 29322938.CrossRefGoogle Scholar
Ho, C. M. & Huerre, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365424.CrossRefGoogle Scholar
Jendoubi, S. & Strykowski, P. J. 1994 Absolute and convective instability of axisymmetric jets with external flow. Phys. Fluids 6 (9), 30003009.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Jubelin, B. 1980 New experimental studies on jet noise amplification. AIAA Paper 1980-0961.CrossRefGoogle Scholar
Kearney-Fischer, M., Kim, J.-H. & Samimy, M. 2009 a Noise control of a high Reynolds number Mach 0.9 heated jet using plasma actuators. AIAA Paper 2009-3188.CrossRefGoogle Scholar
Kearney-Fischer, M., Kim, J.-H. & Samimy, M. 2009 b Control of a high Reynolds number Mach 0.9 heated jet using plasma actuators. Phys. Fluids 21, 095101.CrossRefGoogle Scholar
Kearney-Fischer, M., Kim, J.-H. & Samimy, M. 2010 Flow control of a high Reynolds number Mach 1.3 heated jet using plasma actuators. AIAA Paper 2010-4418.CrossRefGoogle Scholar
Kearney-Fischer, M. & Samimy, M. 2010 Noise control of a high Reynolds number Mach 1.3 heated jet using plasma actuators. AIAA Paper 2010-13.CrossRefGoogle Scholar
Kearney-Fischer, M., Kim, J.-H. & Samimy, M. 2011 Noise control of a high Reynolds number high speed heated jet using plasma actuators. Intl J. Aeroacoust. 10 (5–6), 491509.CrossRefGoogle Scholar
Kerechanin, C. W. II, Samimy, M. & Kim, J. H. 2001 Effects of nozzle trailing edges on acoustic field of supersonic rectangular jet. AIAA J. 39 (6), 10651070.CrossRefGoogle Scholar
Kibens, V. 1980 Discrete noise spectrum generated by an acoustically excited jet. AIAA J. 18 (4), 434441.CrossRefGoogle Scholar
Kim, J.-H., Kastner, J. & Samimy, M. 2009 Active control of a high Reynolds number Mach 0.9 axisymmetric jet. AIAA J. 47 (1), 116128.CrossRefGoogle Scholar
Kim, J.-H., Kearney-Fischer, M., Samimy, M. & Gogineni, S. 2011 Far-field noise control in supersonic jets using conical and contoured nozzles. ASME J. Engng Gas Turbines Power 133, 081201.CrossRefGoogle Scholar
Kim, J.-H., Nishihara, M., Adamovich, I. V., Samimy, M., Gorbatov, S. V. & Pliavaka, F. V. 2010 Development of localized arc filament RF plasma actuators for high-speed and high Reynolds number flow control. Exp. Fluids 49 (2), 497511.CrossRefGoogle Scholar
Kim, J. & Samimy, M. 1999 Mixing enhancement via nozzle trailing edge modifications in a high speed rectangular jet. Phys. Fluids 11 (9), 27312742.CrossRefGoogle Scholar
Krothapalli, A., Arakeri, V. & Greska, B. 2003 Mach wave radiation: a review and an extension. AIAA Paper 2003-1200.CrossRefGoogle Scholar
Lepicovsky, J., Ahuja, K. K., Brown, W. H. & Burrin, R. H. 1985 a Coherent large-scale structures in high Reynolds number supersonic jets. NASA CR 3952.CrossRefGoogle Scholar
Lepicovsky, J., Ahuja, K. K., & Burrin, R. H. 1985 b Tone excited jets. III – flow measurements. J. Sound Vib. 102 (1), 7191.CrossRefGoogle Scholar
Lesshafft, L., Huerre, P. & Sagaut, P. 2010 Aerodynamic sound generation by global modes in hot jets. J. Fluid Mech. 647, 473489.CrossRefGoogle Scholar
Lu, H. Y. 1983 Effect of excitation on coaxial jet noise. AIAA J. 21 (2), 214220.CrossRefGoogle Scholar
McLaughlin, D. K., Morrison, G. L., & Troutt, T. R. 1975 Experiments on the instability waves in a supersonic jet and their acoustic radiation. J. Fluid Mech. 69, 7395.CrossRefGoogle Scholar
Michalke, A. 1984 Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159199.CrossRefGoogle Scholar
Mohseni, K., Colonius, T. & Freund, J. B. 2002 An evaluation of linear instability waves as sources of sound in a supersonic turbulent jet. Phys. Fluids 14 (10), 35933600.CrossRefGoogle Scholar
Monkewitz, P., Bechert, D., Barsikow, B. & Lehmann, B. 1990 Self-excited oscillations and mixing in a heated round jet. J. Fluid Mech. 213, 611639.CrossRefGoogle Scholar
Morrison, G. L. & McLaughlin, D. K. 1979 Noise generation by instabilities in low Reynolds number supersonic jets. J. Sound Vib. 65 (2), 177191.CrossRefGoogle Scholar
Morrison, G. L. 1983 Effects of artificial excitation upon a low Reynolds number Mach 2.5 jet. AIAA J., Technical Notes 21 (6), 920923.CrossRefGoogle Scholar
Obrist, D. 2009 Directivity of acoustic emission from wave packets to the far field. J. Fluid Mech. 640, 165186.CrossRefGoogle Scholar
Oertel, H. 1982 Measured velocity fluctuations inside the mixing layer of a supersonic jet. In Recent Contributions to Fluid Mechanics (ed. Hasse, W.), pp. 170179. Springer-Verlag.CrossRefGoogle Scholar
Panda, J. & Seasholtz, R. G. 2002 Experimental investigation of density fluctuations in high-speed jets and correlation with generated noise. J. Fluid Mech. 450, 97130.CrossRefGoogle Scholar
Papamoschou, D. 1997 Mach wave elimination in supersonic jets. AIAA J. 35 (10), 16041611.CrossRefGoogle Scholar
Papamoschou, D. & Debiasi, M. 1999 Noise measurements on supersonic jets treated with the Mach wave elimination method. AIAA J. 37 (2), 154160.CrossRefGoogle Scholar
Papamoschou, D. & Debiasi, M. 2001 Directional suppression of noise from a high-speed jet. AIAA J. 39 (3), 380387.CrossRefGoogle Scholar
Saiyed, N. H., Mikkelsen, K. L. & Bridges, J. E. 2003 Acoustics and thrust of quiet separate-flow high-bypass-ratio nozzles. AIAA J. 41 (3), 372378.CrossRefGoogle Scholar
Samimy, M., Adamovich, I., Webb, B., Kastner, J., Hileman, J., Keshav, S. & Palm, P. 2004 Development and characterization of plasma actuators for high-speed jet control. Exp. Fluids 37 (4), 577588.CrossRefGoogle Scholar
Samimy, M., Kim, J.-H., Kastner, J., Adamovich, I. & Utkin, Y. 2007 a Active control of high-speed and high-Reynolds-number jets using plasma actuators. J. Fluid Mech. 578, 305330.CrossRefGoogle Scholar
Samimy, M., Kim, J. H., Kastner, J., Adamovich, I. & Utkin, Y. 2007 b Active control of a Mach 0.9 jet for noise mitigation using plasma actuators. AIAA J. 45 (4), 890901.CrossRefGoogle Scholar
Samimy, M., Kim, J.-H., Kearney-Fischer, M. & Sinha, A. 2010 Acoustic and flow fields of an excited high Reynolds number axisymmetric supersonic jet. J. Fluid Mech. 656, 507529.CrossRefGoogle Scholar
Samimy, M., Zaman, K. B. M. Q. & Reeder, M. F. 1993 Effect of tabs on the flow and noise field of an axisymmetric jet. AIAA J. 31 (4), 609619.CrossRefGoogle Scholar
Seiner, J. M., Bhat, T. R. S. & Ponton, M. K. 1994 Mach wave emission from a high-temperature supersonic jet. AIAA J. 32 (12), 23452350.CrossRefGoogle Scholar
Strange, P. J. R. & Crighton, D. G. 1983 Spinning modes on axisymmetric jets, Part 1. J. Fluid Mech. 134, 231245.CrossRefGoogle Scholar
Tam, C. K. W. 1971 Directional acoustic radiation from a supersonic jet generated by shear layer instability. J. Fluid Mech. 46 (4), 757768.CrossRefGoogle Scholar
Tam, C. K. W. & Burton, D. E. 1984 Sound generated by instability waves of supersonic flows. Part 2. Axisymmetric jets. J. Fluid Mech. 138, 273295.CrossRefGoogle Scholar
Tam, C. K. W. & Hu, F. Q. 1989 On the three families of instability waves of high-speed jets. J. Fluid Mech. 201, 447483.CrossRefGoogle Scholar
Tam, C. K. W. 1991 Jet noise generated by large-scale coherent motion. In Aeroacoustics of Flight Vehicles: Theory and Practice (ed. Hubbard, H. H.), WRDC Tech. Rep., vol. 1, Noise Sources, pp. 311–390.Google Scholar
Tam, C. K. W., Ghen, P. & Seiner, J. M. 1992 Relationship between instability waves and noise of high-speed jets. AIAA J. 30 (7), 17471752.CrossRefGoogle Scholar
Tam, C. K. W. 1995 Supersonic jet noise. Ann. Rev. Fluid Mech. 27, 1743.CrossRefGoogle Scholar
Tam, C. K. W. 2009 Mach wave radiation from high-speed jets. AIAA J. 47 (10), 24402448.CrossRefGoogle Scholar
Thurow, B. S., Jiang, N., Kim, J.-H., Lempert, W. & Samimy, M. 2008 Issues with measurements of the convective velocity of large-scale structures in the compressible shear layer of a free jet. Phys. Fluids 20, 066101.CrossRefGoogle Scholar
Troutt, T. R. & McLaughlin, D. K. 1982 Experiments on the flow and acoustic properties of a moderate-Reynolds-number supersonic jet. J. Fluid Mech. 116, 123156.CrossRefGoogle Scholar
Utkin, Y. G., Keshav, S., Kim, J.-H., Kastner, J., Adamovich, I. V. & Samimy, M. 2007 Development and use of localized arc filament plasma actuators for high-speed flow control. J. Phys. D: Appl. Phys. 40 (3), 685694.CrossRefGoogle Scholar
Viswanathan, K. 2004 Aeroacoustics of hot jets. J. Fluid Mech. 516, 3982.CrossRefGoogle Scholar
Viswanathan, K. 2005 Nozzle shaping for reduction of jet noise from single jets. AIAA J. 43 (5), 10081022.CrossRefGoogle Scholar
Viswanathan, K. & Czech, M. J. 2009 Role of jet temperature in correlating jet noise. AIAA J. 47 (5), 10901106.CrossRefGoogle Scholar
Wernet, J. H. & Wernet, M. P. 1994 Stabilized alumina/ethanol colloidal dispersion for seeding high temperature air flows. NASA technical memorandum.Google Scholar
Wu, X. 2005 Mach wave radiation of nonlinearly evolving supersonic instability modes in shear layers. J. Fluid Mech. 523, 121159.CrossRefGoogle Scholar
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1980 Vortex pairing in a circular jet under controlled excitation. Part 1. General jet response. J. Fluid Mech. 101 (3), 449491.CrossRefGoogle Scholar
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1981 Turbulence suppression in free shear flows by controlled excitation. J. Fluid Mech. 103, 133159.CrossRefGoogle Scholar
Zaman, K. B. M. Q., Reeder, M. F. & Samimy, M. 1994 Control of an axisymmetric jet using vortex generators. Phys. Fluids 6 (2), 778793.CrossRefGoogle Scholar