Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T21:59:35.755Z Has data issue: false hasContentIssue false

A study of fast dynamo action in chaotic helical cells

Published online by Cambridge University Press:  26 April 2006

I. Klapper
Affiliation:
New York University, Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA

Abstract

Fast dynamo action in a chaotic time-periodic flow is investigated. Chaotic motion is created by perturbing a spatially periodic array of helical cells similar to Roberts’ cells, leading to an identifiable stretch–fold–shear fast dynamo mechanism. Using the stochastic Wiener bundle method to treat diffusion exactly, numerical results are presented suggesting fast dynamo action. A new numerical method for modelling the role of small magnetic diffusivity is introduced and results are compared with those calculated using the Wiener bundle method. Implications for the role of diffusion in the fast dynamo process are investigated. Finally the relation of the new method to a previously used ‘flux growth’ method are discussed.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnol'D, V. I. & Avez, A. 1968 Ergodic Problems of Classical Mechanics. New York: W. A. Benjamin.
Arnol'D, V. I., Zeldovich, Ya. B., Ruzmaikin, A. A. & Sokolov, D. D., 1981 A magnetic field in a stationary flow with stretching in Riemannian space. Zh. Eksp. Teor. Fiz. 81, 2052. (Transl. Sov. Phys. JETP 81, 1083–1086.Google Scholar
Backus, G.: 1958 A class of self-sustaining dissipative spherical dynamos. Ann. Phys. 4, 372477.Google Scholar
Bayly, B. J.: 1986 Fast magnetic dynamos in chaotic flows. Phys. Rev. Lett. 57, 28002803.Google Scholar
Bayly, B. & Childress, S., 1988 Construction of fast dynamos using unsteady flows and maps in three dimensions. Geophys. Astrophys. Fluid Dyn. 44, 207240.Google Scholar
Bayly, B. J. & Childress, S., 1989 Unsteady dynamo effects at large magnetic Reynolds numbers. Geophys. Astrophys. Fluid Dyn. 49, 2343.Google Scholar
Chorin, J. C.: 1973 Numerical study of slightly viscous flow. J. Fluid Mech. 57, 785796.Google Scholar
Drummond, I. T., Duane, S. & Horgan, R. R., 1984 Scalar diffusion in simulated helical turbulence with molecular diffusivity. J. Fluid Mech. 138, 7591.Google Scholar
Finn, J. M., Hanson, J. D., Kan, I. & Ott, E., 1989 Do steady fast magnetic dynamos exist? Phys. Rev. Lett. 62, 29652968.Google Scholar
Finn, J. M., Hanson, J. D., Kan, I. & Ott, E., 1991 Steady fast dynamo flows. Phys. Fluids B 3, 12501269.Google Scholar
Finn, J. M. & Ott, E., 1988 Chaotic flows and fast magnetic dynamos. Phys. Fluids 31, 29923011.Google Scholar
Finn, J. M. & Ott, E., 1990 The fast kinematic magnetic dynamo and the dissipationless limit. Phys. Fluids B2, 916926.Google Scholar
Gilbert, A. D.: 1988 Fast dynamo action in the Ponomerenko dynamo. Geophys. Astrophys. Fluid Dyn. 44, 214258.Google Scholar
Gilbert, A. D.: 1991 Fast dynamo action in a steady flow. Nature 350, 483485.Google Scholar
Gilbert, A. D.: 1992 Magnetic field evolution in steady chaotic flows. Phil. Trans. R. Soc. Lond. (in press).Google Scholar
Gilbert, A. D. & Childress, S., 1990 Evidence for fast dynamo action in a chaotic web. Phys. Rev. Lett. 65, 21332136.Google Scholar
Grebogi, C., Hammel, S. M., Yorke, J. A. & Sauer, T., 1990 Shadowing of physical trajectories in chaotic dynamics: containment and refinement. Phys. Rev. Lett. 65, 15271530.Google Scholar
Guckenheimer, J. & Holmes, P., 1983 Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer.
Klapper, I.: 1991 Fast magnetic dynamos. Dissertation, Courant Institute of Mathematical Sciences.
Klapper, I.: 1992 Shadowing and the role of small diffusivity in the chaotic advection of scalars Phys. Fluids A (to appear).Google Scholar
Kraichnan, R. H.: 1976 Diffusion of passive-scalar and magnetic fields by helical turbulence. J. Fluid Mech. 77, 753768.Google Scholar
Lichtenberg, A. J. & Lieberman, M. A., 1983 Regular and Stochastic Motion. Springer.
Mckean, H. P.: 1969 Stochastic Integrals. Academic.
Molchanov, S. A., Ruzmaikin, A. A. & Sokolov, D. D., 1985 Kinematic dynamo action in a random flow. Usp. Fiz. Nauk. 145, 593. (Transl. Sov. Phys. Usp. 28, 307–326).Google Scholar
Newhouse, S.: 1980 Lectures on dynamical systems. In Dynamical Systems. (ed. J. Coates & S. Helgason). CIME Lectures. Boston: Birkhauser.
Newhouse, S.: 1986 In The Physics of Phase Space. (ed. Y. S. Kim & W. W. Zachary), pp. 28. Springer.
Otani, N. J.: 1988 Computer simulation of fast kinematic dynamos. E. O. S. Trans. Am. Geophys. Union 69, No. 44, Abstract Sh51-15, p. 1366.Google Scholar
Roberts, G. O.: 1972 Dynamo action of fluid motions with two-dimensional periodicity. Phil. Trans. R. Soc. Lond. A 271, 411454.Google Scholar
Roberts, P. H. & Soward, A. M., 1992 Dynamo theory. Ann. Rev. Fluid Mech. (to appear).Google Scholar
Soward, A. M.: 1987 Fast dynamo action in a steady flow. J. Fluid Mech. 180, 267295.Google Scholar
Vainshtein, S. I. & Zeldovich, Ya. B., 1972 Origin of magnetic fields in astrophysics. Sov. Phys. Usp. 15, 159172.Google Scholar
Vishik, M. M.: 1989 Magnetic field generation by the motion of a highly conducting fluid. Geophys. Astrophys. Fluid Dyn. 48, 151167.Google Scholar
Yomdin, Y.: 1987 Volume growth and entropy. Israel J. Maths 57, 285300.Google Scholar