Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T05:31:13.814Z Has data issue: false hasContentIssue false

Study of a rough-wall turbulent boundary layer under pressure gradient

Published online by Cambridge University Press:  15 March 2022

F. Ghanadi*
Affiliation:
School of Engineering, University of Newcastle, CallaghanNSW2308, Australia
L. Djenidi
Affiliation:
School of Engineering, University of Newcastle, CallaghanNSW2308, Australia
*
Email address for correspondence: [email protected]

Abstract

The behaviour of a fully rough-wall turbulent boundary layer subjected to different pressure gradients is investigated for different Reynolds numbers using hot-wire measurements. Mean velocity and velocity root-mean-square measurements indicate that the boundary layer remains in a self-preserving state regardless of the pressure gradient. However, different pressure gradients lead to different self-preservation states, as suggested by the lack of collapse of the velocity profile between the pressure gradient cases. The results also indicate that the roughness effect is more important than the pressure gradient; particularly, the closer the wall, the more dominant the roughness effect over the pressure gradient effect on the boundary layer. Finally, both spectral and proper orthogonal decomposition analyses applied to the hot-wire measurements indicate that the pressure gradient impacts predominantly the large-scale motion.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alfredsson, P.H. & Örlü, R. 2010 The diagnostic plot – a litmus test for wall bounded turbulence data. Eur. J. Mech. B/Fluids 29 (6), 403406.CrossRefGoogle Scholar
Aubertine, C.D., Eaton, J.K. & Song, S. 2004 Parameters controlling roughness effects in a separating boundary layer. Intl J. Heat Fluid Flow 25 (3), 444450.CrossRefGoogle Scholar
Berkooz, G., Holmes, P. & Lumley, J.L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.CrossRefGoogle Scholar
Bobke, A., Vinuesa, R., Örlü, R. & Schlatter, P. 2017 History effects and near equilibrium in adverse-pressure-gradient turbulent boundary layers. J. Fluid Mech. 820, 667692.CrossRefGoogle Scholar
Bradshaw, P. 1967 The turbulence structure of equilibrium boundary layers. J. Fluid Mech. 29 (4), 625645.CrossRefGoogle Scholar
Brzek, B.G. 2007 The effects of external conditions in turbulent boundary layers. PhD thesis, Rensselaer Polytechnic Institute.Google Scholar
Cal, R.B., Brzek, B., Johansson, T.G. & Castillo, L. 2008 Influence of the external conditions on transitionally rough favorable pressure gradient turbulent boundary layers. J. Turbul. 9, N38.CrossRefGoogle Scholar
Cal, R.B., Brzek, B., Johansson, T.G. & Castillo, L. 2009 The rough favourable pressure gradient turbulent boundary layer. J. Fluid Mech. 641, 129155.CrossRefGoogle Scholar
Cal, R.B. & Castillo, L. 2008 Similarity analysis of favorable pressure gradient turbulent boundary layers with eventual quasilaminarization. Phys. Fluids 20 (10), 105106.CrossRefGoogle Scholar
Cao, S. & Tamura, T. 2006 Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill. J. Wind Engng Ind. Aerodyn. 94 (1), 119.CrossRefGoogle Scholar
Castillo, L. & George, W.K. 2001 Similarity analysis for turbulent boundary layer with pressure gradient: outer flow. AIAA J. 39 (1), 4147.CrossRefGoogle Scholar
Chao, D.A., Castillo, L. & Turan, Ö.F. 2007 Effect of roughness in the development of an adverse pressure gradient turbulent boundary layer. Master's thesis, Rensselaer Polytechnic Institute.Google Scholar
Coleman, H.W., Moffat, R.J. & Kays, W.M. 1977 The accelerated fully rough turbulent boundary layer. J. Fluid Mech. 82 (3), 507528.CrossRefGoogle Scholar
Djenidi, L., Antonia, R., Amielh, M. & Anselmet, F. 2010 Pod analysis of the near-wall region of a rough wall turbulent boundary layer. In IUTAM Symposium on The Physics of Wall-Bounded Turbulent Flows on Rough Walls, pp. 49–54. Springer.CrossRefGoogle Scholar
Djenidi, L., Antonia, R.A., Amielh, M. & Anselmet, F. 2008 A turbulent boundary layer over a two-dimensional rough wall. Exp. Fluids 44 (1), 3747.CrossRefGoogle Scholar
Djenidi, L., Kamruzzaman, M. & Dostal, L. 2019 a Effects of wall suction on a 2d rough wall turbulent boundary layer. Exp. Fluids 60 (3), 43.CrossRefGoogle Scholar
Djenidi, L., Talluru, K.M. & Antonia, R.A. 2018 Can a turbulent boundary layer become independent of the Reynolds number? J. Fluid Mech. 851, 122.CrossRefGoogle Scholar
Djenidi, L., Talluru, K.M. & Antonia, R.A. 2019 b A velocity defect chart method for estimating the friction velocity in turbulent boundary layers. Fluid Dyn. Res. 51 (4), 045502.CrossRefGoogle Scholar
Druault, P., Bouhoubeiny, E. & Germain, G. 2012 Pod investigation of the unsteady turbulent boundary layer developing over porous moving flexible fishing net structure. Exp. Fluids 53 (1), 277292.CrossRefGoogle Scholar
Durbin, P.A., Medic, G., Seo, J.-M., Eaton, J.K. & Song, S. 2001 Rough wall modification of two-layer k- $\varepsilon$. Trans. ASME J. Fluids Engng 123 (1), 1621.CrossRefGoogle Scholar
Dvorak, F.A. 1969 Calculation of turbulent boundary layers on rough surfaces in pressure gradient. AIAA J. 7 (9), 17521759.CrossRefGoogle Scholar
Finnigan, J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32 (1), 519571.CrossRefGoogle Scholar
George, W.K. 1995 Some new ideas for similarity of turbulent shear flows. Turbul. Heat Mass Transfer 1, 1324.Google Scholar
George, W.K. & Castillo, L. 1997 Zero-pressure-gradient turbulent boundary layer. Appl. Mech. Rev. 50 (12), 689729.CrossRefGoogle Scholar
Ghanadi, F. & Djenidi, L. 2021 a Reynolds number effect on the response of a rough wall turbulent boundary layer to local wall suction. J. Fluid Mech. 916.CrossRefGoogle Scholar
Ghanadi, F. & Djenidi, L. 2021 b Spatial resolution effects on measurements in a rough wall turbulent boundary layer. Exp. Fluids 62 (8), 16.CrossRefGoogle Scholar
Harun, Z., Monty, J.P., Mathis, R. & Marusic, I. 2013 Pressure gradient effects on the large-scale structure of turbulent boundary layers. J. Fluid Mech. 715, 477.CrossRefGoogle Scholar
Hutchins, N., Nickels, T.B., Marusic, I. & Chong, M.S. 2009 Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103136.CrossRefGoogle Scholar
Jackson, P.S. 1981 On the displacement height in the logarithmic velocity profile. J. Fluid Mech. 111, 1525.CrossRefGoogle Scholar
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.CrossRefGoogle Scholar
Jones, M.B., Nickels, T.B. & Marusic, I. 2008 On the asymptotic similarity of the zero-pressure-gradient turbulent boundary layer. J. Fluid Mech. 616, 195203.CrossRefGoogle Scholar
Kameda, T., Mochizuki, S., Osaka, H. & Higaki, K. 2008 Realization of the turbulent boundary layer over the rough wall satisfied the conditions of complete similarity and its mean flow quantities. J. Fluid Sci. and Technol. 3 (1), 3142.CrossRefGoogle Scholar
Kamruzzaman, M., Djenidi, L., Antonia, R.A. & Talluru, K.M. 2015 Drag of a turbulent boundary layer with transverse 2d circular rods on the wall. Exp. Fluids 56 (6), 121.CrossRefGoogle Scholar
Kamruzzaman, M., Talluru, K.M., Djenidi, L. & Antonia, R.A. 2014 An experimental study of turbulent boundary layer over 2d transverse circular bars. In 19th Australasian Fluid Mechanics Conference, Melbourne, Australia.CrossRefGoogle Scholar
Krogstad, P-Å. & Antonia, R.A. 1994 Structure of turbulent boundary layers on smooth and rough walls. J. Fluid Mech. 277, 121.CrossRefGoogle Scholar
Krogstad, P.-Å. & Efros, V. 2012 About turbulence statistics in the outer part of a boundary layer developing over two-dimensional surface roughness. Phys. Fluids 24 (7), 075112.CrossRefGoogle Scholar
Kruse, N., Kuhn, S. & von Rohr, P.R. 2006 Wavy wall effects on turbulence production and large-scale modes. J. Turbul. 7, N31.CrossRefGoogle Scholar
Lee, S., Lele, S.K. & Moin, P. 1992 Simulation of spatially evolving turbulence and the applicability of Taylor's hypothesis in compressible flow. Phys. Fluids A: Fluid Dyn. 4 (7), 15211530.CrossRefGoogle Scholar
Ligrani, P.M. & Bradshaw, P. 1987 Spatial resolution and measurement of turbulence in the viscous sublayer using subminiature hot-wire probes. Exp. Fluids 5 (6), 407417.CrossRefGoogle Scholar
Lumley, J.L. 1967 The structure of inhomogeneous turbulent flows. In Atmospheric Turbulence and Radio Wave Propagation, pp. 166–177.Google Scholar
Pailhas, G., Touvet, Y. & Aupoix, B. 2008 Effects of Reynolds number and adverse pressure gradient on a turbulent boundary layer developing on a rough surface. J. Turbul. 9, N43.CrossRefGoogle Scholar
Perry, A.E. & Joubert, P.N. 1963 Rough-wall boundary layers in adverse pressure gradients. J. Fluid Mech. 17 (2), 193211.CrossRefGoogle Scholar
Perry, A.E., Marusic, I. & Jones, M.B. 2002 On the streamwise evolution of turbulent boundary layers in arbitrary pressure gradients. J. Fluid Mech. 461, 6191.CrossRefGoogle Scholar
Perry, A.E., Marušić, I. & Li, J.D. 1994 Wall turbulence closure based on classical similarity laws and the attached eddy hypothesis. Phys. Fluids 6 (2), 10241035.CrossRefGoogle Scholar
Perry, A.E., Schofield, W.H. & Joubert, P.N. 1969 Rough wall turbulent boundary layers. J. Fluid Mech. 37 (2), 383413.CrossRefGoogle Scholar
Piomelli, U. & Yuan, J. 2013 Numerical simulations of spatially developing, accelerating boundary layers. Phys. Fluids 25 (10), 101304.CrossRefGoogle Scholar
Raupach, M.R., Antonia, R.A. & Rajagopalan, S. 1991 Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44 (1), 125.CrossRefGoogle Scholar
Romano, G.P. 1995 Analysis of two-point velocity measurements in near-wall flows. Exp. Fluids 20 (2), 6883.CrossRefGoogle Scholar
Rotta, J.C.J. 1962 Turbulent boundary layers in incompressible flow. Prog. Aerosp. Sci. 2 (1), 195.CrossRefGoogle Scholar
Schultz, M.P. & Flack, K.A. 2007 The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J. Fluid Mech. 580, 381.CrossRefGoogle Scholar
Shehzad, M., Sun, B., Jovic, D., Ostovan, Y., Cuvier, C., Foucaut, J.-M., Willert, C., Atkinson, C. & Soria, J. 2021 Investigation of large scale motions in zero and adverse pressure gradient turbulent boundary layers using high-spatial-resolution particle image velocimetry. Expl Therm. Fluid Sci. 129, 110469.CrossRefGoogle Scholar
Shin, J.H. & Song, S. 2015 a Pressure gradient effects on smooth and rough surface turbulent boundary layers – part i: favorable pressure gradient. Trans. ASME J. Fluids Engng 137 (1), 011203.CrossRefGoogle Scholar
Shin, J.H. & Song, S. 2015 b Pressure gradient effects on smooth-and rough-surface turbulent boundary layers – part ii: adverse pressure gradient. Trans. ASME J. Fluids Engng 137 (1), 011204.CrossRefGoogle Scholar
Skaare, P.E. & Krogstad, P.-Å. 1994 A turbulent equilibrium boundary layer near separation. J. Fluid Mech. 272, 319348.CrossRefGoogle Scholar
Song, S. & Eaton, J. 2002 The effects of wall roughness on the separated flow over a smoothly contoured ramp. Exp. Fluids 33 (1), 3846.CrossRefGoogle Scholar
Spalart, P.R. & Watmuff, J.H. 1993 Experimental and numerical study of a turbulent boundary layer with pressure gradients. J. Fluid Mech. 249, 337371.CrossRefGoogle Scholar
Squire, D.T., Morrill-Winter, C., Hutchins, N., Schultz, M.P., Klewicki, J.C. & Marusic, I. 2016 Comparison of turbulent boundary layers over smooth and rough surfaces up to high Reynolds numbers. J. Fluid Mech. 795, 210240.CrossRefGoogle Scholar
Sreenivasan, K.R. 1989 The turbulent boundary layer. In Frontiers in Experimental Fluid Mechanics, pp. 159–209. Springer.CrossRefGoogle Scholar
Tachie, M.F. & Shah, M.K. 2008 Favorable pressure gradient turbulent flow over straight and inclined ribs on both channel walls. Phys. Fluids 20 (9), 095103.CrossRefGoogle Scholar
Talluru, K.M., Djenidi, L., Kamruzzaman, M. & Antonia, R.A. 2016 Self-preservation in a zero pressure gradient rough-wall turbulent boundary layer. J. Fluid Mech. 788, 5769.CrossRefGoogle Scholar
Tang, S.L., Djenidi, L., Antonia, R.A. & Zhou, Y. 2014 Pod analyses of PIV and hot wire velocity data in a cylinder wake. In 19th Australasian Fluid Mechanics Conference, Melbourne, Australia. Australian Fluid Mechanics Society.Google Scholar
Tay, G.F.K., Kuhn, D.C.S. & Tachie, M.F. 2009 a Influence of adverse pressure gradient on rough-wall turbulent flows. Intl J. Heat Fluid Flow 30 (2), 249265.CrossRefGoogle Scholar
Tay, G.F.K., Kuhn, D.C.S. & Tachie, M.F. 2009 b Particle image velocimetry study of rough-wall turbulent flows in favorable pressure gradient. Trans. ASME J. Fluids Engng 131 (6).CrossRefGoogle Scholar
Taylor, G.I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. A 164 (919), 476490.CrossRefGoogle Scholar
Townsend, A.A.R. 1980 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Vila, C.S., Vinuesa, R., Discetti, S., Ianiro, A., Schlatter, P. & Örlü, R. 2020 Experimental realisation of near-equilibrium adverse-pressure-gradient turbulent boundary layers. Expl Therm. Fluid Sci. 112, 109975.CrossRefGoogle Scholar
Wu, W. & Piomelli, U. 2018 Effects of surface roughness on a separating turbulent boundary layer. J. Fluid Mech. 841, 552.CrossRefGoogle Scholar
Zagarola, M.V. & Smits, A.J. 1998 Mean-flow scaling of turbulent pipe flow. J. Fluid Mech. 373, 3379.CrossRefGoogle Scholar