Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T21:26:58.015Z Has data issue: false hasContentIssue false

Structure of thermal boundary layers in turbulent Rayleigh–Bénard convection

Published online by Cambridge University Press:  23 January 2007

R. DU PUITS
Affiliation:
Department of Mechanical Engineering, Ilmenau University of Technology, P.O. Box 100565, 98693 Ilmenau, Germany
C. RESAGK
Affiliation:
Department of Mechanical Engineering, Ilmenau University of Technology, P.O. Box 100565, 98693 Ilmenau, Germany
A. TILGNER
Affiliation:
Institute of Geophysics, University of Goettingen, 37075 Goettingen, Germany
F. H. BUSSE
Affiliation:
Institute of Physics, University of Bayreuth, 95440 Bayreuth, Germany
A. THESS
Affiliation:
Department of Mechanical Engineering, Ilmenau University of Technology, P.O. Box 100565, 98693 Ilmenau, Germany

Abstract

We report high-resolution local-temperature measurements in the upper boundary layer of turbulent Rayleigh–Bénard (RB) convection with variable Rayleigh number Ra and aspect ratio Γ. The primary purpose of the work is to create a comprehensive data set of temperature profiles against which various phenomenological theories and numerical simulations can be tested. We performed two series of measurements for air (Pr = 0.7) in a cylindrical container, which cover a range from Ra≈109 to Ra≈1012 and from Γ≈1 to Γ≈10. In the first series Γ was varied while the temperature difference was kept constant, whereas in the second series the aspect ratio was set to its lowest possible value, Γ=1.13, and Ra was varied by changing the temperature difference. We present the profiles of the mean temperature, root-mean-square (r.m.s.) temperature fluctuation, skewness and kurtosis as functions of the vertical distance z from the cooling plate. Outside the (very short) linear part of the thermal boundary layer the non-dimensional mean temperature Θ is found to scale as Θ(z)∼zα, the exponent α≈0.5 depending only weakly on Ra and Γ. This result supports neither Prandtl's one-third law nor a logarithmic scaling law for the mean temperature. The r.m.s. temperature fluctuation σ is found to decay with increasing distance from the cooling plate according to σ(z)∼zβ, where the value of β is in the range -0.30>β>-0.42 and depends on both Ra and Γ. Priestley's β=−1/3 law is consistent with this finding but cannot explain the variation in the scaling exponent. In addition to profiles we also present and discuss boundary-layer thicknesses, Nusselt numbers and their scaling with Ra and Γ.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amati, G., Koal, K., Massaioli, F., Sreenivasan, K. R. & Verzicco, R. 2005 Turbulent thermal convection at high Rayleigh numbers for a Boussinesq fluid of constant Prandtl number. Phys. Fluids 17, 121701.CrossRefGoogle Scholar
Belmonte, A., Tilgner, A. & Libchaber, A. 1993 Boundary layer length scales in thermal turbulence. Phys. Rev. Lett. 70, 40674070.CrossRefGoogle ScholarPubMed
Belmonte, A., Tilgner, A. & Libchaber, A. 1994 Temperature and velocity boundary layers in turbulent convection. Phys. Rev. E 50, 269279.CrossRefGoogle ScholarPubMed
Best, A. C. 1935 Geophys. Mem. Lond 65.Google Scholar
Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X.-Z., Zaleski, S. & Zanetti, G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon.Google Scholar
Chavanne, X., Chilla, F., Castaing, B., Hébral, B., Chabaud, B. & Chaussy, J. 1997 Observation of the ultimate regime in Rayleigh–Bénard convection. Phys. Rev. Lett. 79, 36483651.CrossRefGoogle Scholar
Chavanne, X., Chilla, F., Chabaud, B., Castaing, B. & Hébral, J., , B. 2001 Turbulent Rayleigh–Bénard convection in gaseous and liquid He. Phys. Fluids 13, 13001320.CrossRefGoogle Scholar
Chilla, F., Ciliberto, S., Innocenti, C. & Pampaloni, E. 1993 Boundary layer and scaling properties in turbulent thermal convection. Nuovo Cimento 15, 1229.CrossRefGoogle Scholar
Chu, T. Y. & Goldstein, R. J. 1973 Turbulent convection in a horizontal layer of water. J. Fluid Mech. 60, 141159.CrossRefGoogle Scholar
Deardorff, J. W. & Willis, G. E. 1967 Investigation of turbulent thermal convection between horizonzal plates. J. Fluid Mech. 28, 675704.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.CrossRefGoogle Scholar
Fernandes, R. L. J. & Adrian, R. J. 2002 Scaling of velocity and temperature fluctuations in turbulent thermal convection. Expl Thermal Fluid Sci. 26, 355360.CrossRefGoogle Scholar
Fitzjarrald, D. E. 1977 An experimental study of turbulent convection in air. J. Fluid Mech. 73, 693719.CrossRefGoogle Scholar
Fleischer, A. S. & Goldstein, R. J. 2002 High-Rayleigh-number convection of pressurized gases in a horizontal enclosure. J. Fluid Mech. 469, 112.CrossRefGoogle Scholar
Funfschilling, D. & Ahlers, G. 2004 Plume motion and large-scale circulation in a cylindrical Rayleigh–Bénard cell. Phys. Rev. Lett. 92, 194502.CrossRefGoogle Scholar
Haramina, T. & Tilgner, A. 2004 Coherent structures in boundary layers of Rayleigh–Bénard convection. Phys. Rev. E 69, 056306.CrossRefGoogle ScholarPubMed
Kraichnan, R. H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 13741389.CrossRefGoogle Scholar
Landau, L. D. & Lifschitz, E. M. 1991 Lehrbuch der Theoretischen Physik, Band IV, Hydrodynamik. Akademie, Verlag GmbH, Berlin 1991.Google Scholar
Lui, S.-L. & Xia, K.-Q. 1998 Spatial structure of the thermal boundary layer in turbulent convection. Phys. Rev. E 57, 54945503.CrossRefGoogle Scholar
Malkus, W. V. R. 1954a Discrete transistions in turbulent convection. Proc. R. Soc. A 225, 185.Google Scholar
Malkus, W. V. R. 1954b The heat transfer and spectrum of thermal turbulence. Proc. R. Soc. A 225, 196.Google Scholar
Niemela, J. J., Skrbek, L., Sreenivasan, K. R. & Donelly, R. J. 2000 Turbulent convection at very high Rayleigh numbers. Nature 404, 837840.CrossRefGoogle ScholarPubMed
Niemela, J. J. & Sreenivasan, K. R. 2003 Confined turbulent convection. J. Fluid Mech. 481, 355384.CrossRefGoogle Scholar
Niemela, J. J. & Sreenivasan, K. R. 2005 Turbulent convection at high Rayleigh numbers and aspect ratio 4. J. Fluid Mech. 557, 411422.CrossRefGoogle Scholar
Prandtl, L. 1932 Meteorologische Anwendungen der Stroemungslehre. Beitr. z. Phys. Atmos. 19, 188202.Google Scholar
Priestley, C. H. B. 1954 Convection from a large horizontal surface. Austral. J. Phys. 7, 176201.CrossRefGoogle Scholar
Priestley, C. H. B. 1959 Turbulent Transport in the Lower Atmosphere. University of Chicago Press.Google Scholar
Ramdas, L. A. 1953 Proc. Ind. Acad. Sci. 37, 304–16.CrossRefGoogle Scholar
Rider, L. A. & Robinson, G. D. 1951 Q. J. R. Met. Soc. 77, 375401.CrossRefGoogle Scholar
Siggia, E. D. 1994 High Rayleigh number convection. Annu. Rev. Fluid Mech. 26, 137168.CrossRefGoogle Scholar
Shang, X.-D., Qiu, X.-L., Tong, P. & Xia, K.-Q. 2004 Measurement of the local convective heat flux in turbulent Rayleigh–Bénard convection. Phys. Rev. E 70, 026308.CrossRefGoogle ScholarPubMed
Thomas, D. B. & Townsend, A. A. 1957 Turbulent convection over a heated surface. J. Fluid Mech. 2, 473492.CrossRefGoogle Scholar
Tilgner, A., Belmonte, A. & Libchaber, A. 1993 Temperature and velocity profiles of turbulent convection in water. Phys. Rev. E 47, 22532256.CrossRefGoogle ScholarPubMed
Townsend, A. A. 1958 Temperature fluctuations over a heated horizontal surface. J. Fluid Mech. 5, 209241.CrossRefGoogle Scholar
Verzicco, R. & Camussi, R. 2003 Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell. J. Fluid Mech. 477, 1949.CrossRefGoogle Scholar
Xia, K.-Q., Sun, C. & Zhou, S.-Q. 2003 Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Phys. Rev. E 68, 066303.CrossRefGoogle ScholarPubMed