Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T22:06:26.671Z Has data issue: false hasContentIssue false

Structure of the transient wall-friction law in one-dimensional models of laminar pipe flows

Published online by Cambridge University Press:  20 April 2006

J. L. Achard
Affiliation:
Institut de Méanique do Grenoble, B.P. 53 X, 38041, Grenoble Cedex
G. M. Lespinard
Affiliation:
Institut de Méanique do Grenoble, B.P. 53 X, 38041, Grenoble Cedex

Abstract

The problem of describing an unsteady cylindrical pipe flow with one-dimensional equations is investigated, and an exact method for obtaining a closure relationship is proposed for the transient shear stress in a laminar flow submitted to an arbitrary transient pressure gradient. Extensive comparisons are given for a step or a harmonic pressure gradient between the approximate solution derived from this method, some results of the literature and exact solutions of the Navier–Stokes equations.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1970 Handbook of Mathematical Functions, p. 409. Dover.
Delhaye, J. M. & Achard, J. L. 1976 On the averaging operators introduced in two-phase flow modelling. O.E.C.D./N.E.A., Specialist's Meeting on Transient Two-Phase Flow, Toronto.
Doetsch, G. 1961 Guide to the Applications of the Laplace Transforms, p. 192. London: Van Nostrand.
Ishii, M. & Chawla, T. C. 1979 Two-fluid model and momentum interaction between phases. U.S. Nuclear Regulatory Commission, 7th Water Reactor Safety Research Information Meeting.
Koshkin, V. K., Kalinin, E. K., Dreitser, G. A., Galitseisky, B. M. & Izosimov, V. G. 1970 Experimental study of non-steady convective heat transfer in tubes. Int. J. Heat Mass Transfer 13, 12711281.Google Scholar
Lambossy, P. 1952 Oscillations forcées d'un liquide incompressible et visqueux dans un tube rigide et horizontal. Calcul de la force de frottement. Helv. Phys. Acta 25.Google Scholar
Landau, L. & Lifshitz, E. 1971 Mécanique des Fluides, p. 112. Moscow: Editions MIR.
Letelier, M. F. & Leutheusser, H. J. 1978 Unified approach to the solution of problems of unsteady laminar flow in long pipes. Proc. A.S.M.E., Winter Ann. Meeting — Symp. on Fluid Transients and Acoustics in the Power Industry, pp. 207213.
Nusselt, W. 1910 The dependence of the heat-transfer coefficient on the tube length. Z. Ver. Dtsch. Ing. 54, 11541158.Google Scholar
Perlmutter, M. & Siegel, R. 1961 Unsteady laminar flow in a duct with unsteady heat addition. Trans. A.S.M.E. C, J. Heat Transfer 83, 432440.Google Scholar
Pham, D. T. & Veteau, J. M. 1977 Lois constitutives en variables moyennées pour les écoulements de fluides; étude de la loi de frottement instationnaire pour l’écoulement monophasique laminaire en conduite cylindrique. Commissariat à l'Energie Atomique (France), Rep. 4816.Google Scholar
Sexl, T. 1930 Über den von E. G. Richardson entdeckten ‘Annulareffekt’ Z. Phys. 61, 349362.Google Scholar
Stein, R. P. 1971 Engineering relationships for turbulent forced convection heat transfer in ducts with flux transients. Argonne National Laboratory (U.S.A.) Rep. 7754.Google Scholar
Szymanski, P. 1932 Quelques solutions exactes des équations de l'hydrodynamique et du fluide visqueux dans le cas d'un tube cylindrique. J. Math. Pures & Appl. 11 (9), 67107.Google Scholar
Takahashi, Y., Rabins, M. J. & Auslander, D. M. 1972 Control and Dynamic Systems, p. 208. Addison-Wesley.
Zielke, W. 1968 Frequency dependent friction in transient pipe flow. Trans. A.S.M.E. D, J. Basic Engng 90, 109115.Google Scholar