Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T20:57:03.846Z Has data issue: false hasContentIssue false

The structure of a steady high-speed deflagration with a finite origin

Published online by Cambridge University Press:  20 April 2006

D. R. Kassoy
Affiliation:
Mechanical Engineering Department, University of Colorado, Boulder, Colorado 80309, U.S.A.
J. F. Clarke
Affiliation:
Aerodynamics, Cranfield Institute of Technology, Bedford MK43 0AL. England

Abstract

A theoretical study is made of the structure of a steady planar deflagration downstream of a specific origin location from which a compressible reactive gas flow emanates. The chemistry is modelled by a high-activation-energy Arrhenius reactionrate law without the introduction of an ignition temperature. Chemically derived heat addition is significant relative to the initial thermal energy of the flow. Perturbation methods, based on the limit of high activation energy, are used to construct solutions for sub- and supersonic values of the Mach number [ ] at the origin. With the exception of a thin layer adjacent to the origin in which very small changes occur, the structure of the deflagration is determined by a fundamental balance of convection, reaction and compressibility effects. Transport processes have an insignificant effect on the energetics of the flow. The upstream portion of the deflagration is dominated by an ignition event reminiscent of the induction period of an adiabatic thermal explosion. Subsequently in the neighbourhood of a well-defined ignition delay (or explosion) location a very rapid reaction takes place with order-unity changes in all the dependent variables. Compressibility effects are shown to be the source of basic limitations on the maximum temperature rise permitted in a flow with a particular value of [ ]. Chapman–Jouguet deflagrations are found to appear when the chemical heat addition is maximized for a given [ ]. Subsonic combustion is shown to exist for fairly general initial conditions at the origin. In contrast, a purely supersonic reaction is found to be possible only for specifically defined values of the initial strain rate and temperature gradient which would be difficult to control in the experimental environment.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson T. C.1960 Phys. Fluids 3, 706.
Birkan, M. & Kassoy D. R.1983 Combust. Sci. Tech. 33, 125.
Bowen J. R.1967 Phys. Fluids 10, 290.
Bradley J. N.1962 Shock Waves in Chemistry and Physics. Methuen.
Buckmaster, J. D. & Ludford G. S. S.1982 Theory of Laminar Flames. Cambridge University Press.
Bush, W. B. & Fendell F. E.1970 Combust. Sci. Tech. 1, 421.
Bush, W. B. & Fendell F. E.1971 Combust. Sci. Tech. 2, 271.
Carrier G. F., Fendell, F. E. & Bush W. B.1978 Combust. Sci. Tech. 18, 33.
Clarke J. F.1983a Combust. Flame 50, 125.
Clarke J. F.1983b J. Fluid Mech. 136, 139.
Clarke, J. F. & McIntosh A. C.1980 Proc. R. Soc. Lond. A 372, 367.
Courant, R. & Friedrichs K. O.1948 Supersonic Flow and Shock Waves. Interscience.
Curtiss C. F., Hirschfelder, J. O. & Barnett M. P.1959 J. Chem. Phys. 30, 470.
Duff R. E.1978 J. Chem. Phys. 28, 1193.
Erpenbeck J. J.1962a Phys. Fluids 5, 604.
Erpenbeck J. J.1962b Phys. Fluids 5, 1181.
Erpenbeck J. J.1963 In Proc. 9th Symp. (Intl) on Combustion, p. 442. The Combustion Institute.
Erpenbeck J. J.1964 Phys. Fluids 7, 684.
Erpenbeck J. J.1967 Phys. Fluids 10, 274.
Erpenbeck J. J.1970 Phys. Fluids 13, 2007.
Fickett, W. & Davis W. C.1979 Detonation. University of California Press.
Hirschfelder, J. O. & Curtiss C. F.1949 J. Chem. Phys. 17, 1076.
Hirschfelder, J. O. & Curtiss C. F.1958 J. Chem. Phys. 28, 1130.
Johnson W. E.1963 Arch. Rat. Mech. Anal. 13, 46.
Kapila A. K., Matkowsky, B. J. & van Harten A.1983 SIAM J. Appl. Maths 43, 491.
Kármán, T. Von & Millán G.1953 In Anniversary Volume on Applied Mechanics Dedicated to C. B. Bienzo, p. 58. Haarlem. N. V. de Technisch Uitgeverij H. Stan.
Kassoy D. R.1975 Q. J. Mech. Appl. Maths 28, 63.
Kassoy D. R.1977 Q. J. Mech. Appl. Maths 30, 71.
Koumoutsos, N. G. & Kovitz A. A.1963 Phys. Fluids 6, 1007.
Landau, L. D. & Lifshitz E. M.1959 Fluid Mechanics. Pergamon.
Linder B., Curtiss, C. F. & Hirschfelder J. O.1958 J. Chem. Phys. 28, 1147.
Lu, G. C. & Ludford G. S. S.1982 SIAM J. Appl. Maths 42, 625.
Nicholls J. A.1963 In Proc. 9th Symp. (Intl) on Combustion, p. 488. The Combustion Institute.
Semenov N. N.1928 Z. Phys. 48, 571.
Shapiro A.1954 The Dynamics and Thermodynamics of Compressible Fluids Flow, vol. I. Ronald.
Stewart, D. S. & Ludford G. S. S.1983 J. Méc. 3, 463.
Tarver C. M.1982 Combust. Flame 46, 111.
Williams F. A.1965 Combustion Theory. Addison Wesley.
Wood W. W.1961 Phys. Fluids 4, 46.
Wood, W. W. & Salsburg Z. W.1960 Phys. Fluids 3, 549.