Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T22:10:52.785Z Has data issue: false hasContentIssue false

Structural sensitivity of the secondary instability in the wake of a circular cylinder

Published online by Cambridge University Press:  26 March 2010

FLAVIO GIANNETTI*
Affiliation:
Dipartimento di Ingegneria Meccanica, Università di Salerno, Via Ponte Don MeLillo 1, 84084 Fisciano (SA), Italy
SIMONE CAMARRI
Affiliation:
Dipartimento di Ingegneria Aerospaziale, Università di Pisa, Via G. Caruso 8, 56122 Pisa, Italy
PAOLO LUCHINI
Affiliation:
Dipartimento di Ingegneria Meccanica, Università di Salerno, Via Ponte Don MeLillo 1, 84084 Fisciano (SA), Italy
*
Email address for correspondence: [email protected]

Abstract

The sensitivity of the three-dimensional secondary instability of a circular-cylinder wake to a structural perturbation of the associated linear equations is investigated. In particular, for a given flow condition, the region of maximum coupling between the velocity components is localized by using the most unstable Floquet mode and its adjoint mode. The variation of this region in time is also found by considering a structural perturbation which is impulsively applied in time at a given phase of the vortex-shedding process. The analysis is carried out for both mode A and mode B types of transition in the wake of a circular cylinder using a finite-difference code. The resulting regions identified as the core of the instability are in full agreement with the results reported in the literature and with the a posteriori checks documented here.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barkley, D. 2005 Confined three-dimensional stability analysis of the cylinder wake. Phys. Rev. E 71.CrossRefGoogle ScholarPubMed
Barkley, D. & Henderson, R. D. 1996 Three-dimensional floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.CrossRefGoogle Scholar
Bayly, B. J. 1988 Three-dimensional centrifugal-type instabilities in inviscid two-dimensional flows. Phys. Fluids 31, 5664.CrossRefGoogle Scholar
Bottaro, A., Corbett, P. & Luchini, P. 2003 The effect of base flow variation on flow stability. J. Fluid Mech. 476, 293302.CrossRefGoogle Scholar
Brede, M., Eckelmann, H. & Rockwell, D. 1996 On secondary vortices in a cylinder wake. Phys. Fluids 8, 21172124.CrossRefGoogle Scholar
Caulfield, C. P. & Kerswell, R. R. 2000 The nonlinear development of three-dimensional disturbances at hyperbolic stagnation points: a model of the braid region in mixing layers. Phys. Fluids 12, 10321043.CrossRefGoogle Scholar
Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 156, 209240.Google Scholar
Davis, T. A. 2004 Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method. ACM Trans. Math. Software 30 (2), 196199.CrossRefGoogle Scholar
Drazin, P. G. 2002 Introduction to Hydrodynamic Stability. Cambridge University Press.CrossRefGoogle Scholar
Friedlander, S. & Vishik, M. M. 1991 Instability criteria for the flow of an inviscid incompressible fluid. Phys. Rev. Lett. 66, 22042206.CrossRefGoogle ScholarPubMed
Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167197.CrossRefGoogle Scholar
Ince, E. L. 1926 Ordinary Differential Equations. Dover.Google Scholar
Karniadakis, G. E. & Triantafyllou, G. S. 1992 Three-dimensional dynamics and transition to turbulence in the wakes of bluff bodies. J. Fluid Mech. 238, 130.CrossRefGoogle Scholar
Landman, M. J. & Saffman, P. G. 1987 The three-dimensional instability of strained vortices in a viscous fluid. Phys. Fluids 30, 23392342.CrossRefGoogle Scholar
Leblanc, S. & Cambon, C. 1998 Effects of the Coriolis force on the stability of Stuart vortices. J. Fluid Mech. 356, 353379.CrossRefGoogle Scholar
Lehoucq, R. B., Sorensen, D. C. & Yang, C. 1998 ARPACK Users Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM.CrossRefGoogle Scholar
Leweke, T. & Provansal, M. 1995 The flow behind rings: bluff body wakes without end effects. J. Fluid Mech. 288, 265310.CrossRefGoogle Scholar
Leweke, T. & Williamson, C. H. K. 1998 Three-dimensional instabilities in wake transition. Eur. J. Mech. 17, 571586.CrossRefGoogle Scholar
Lifschitz, A. & Hameiri, E. 1991 Local stability conditions in fluid dynamics. Phys. Fluids 3 (11), 26442651.CrossRefGoogle Scholar
Luchini, P., Giannetti, F. & Pralits, J. O. 2008 Structural sensitivity of linear and nonlinear global modes. In Proocedings of the 5th AIAA Theoretical Fluid Mechanics Conference, June 23–26, Seattle, Washington. AIAA Paper 2008-4227.Google Scholar
Marquet, O., Lombardi, M., Chomaz, J.-M., Sipp, D. & Jacquin, L. 2009 Direct and adjoint global modes of a recirculation bubble: lift-up and convective non-normalities. J. Fluid Mech. 622, 121.CrossRefGoogle Scholar
Marquet, O., Sipp, D. & Jacquin, L. 2008 Sensitivity analysis and passive control of cylinder flow. J. Fluid Mech. 615, 221252.CrossRefGoogle Scholar
Mittal, R. & Balachandar, S. 1995 Generation of streamwise vortical structures in bluff body wakes. Phys. Rev. Lett. 75, 1300–367.CrossRefGoogle ScholarPubMed
Noack, B. R. & Eckelmann, H. 1994 A global stability analysis of the steady and periodic cylinder wake. J. Fluid Mech. 270, 297330.CrossRefGoogle Scholar
Noack, B. R., König, M. & Eckelmann, H. 1993 Three-dimensional stability analysis of the periodic flow around a circular cylinder. Phys. Fluids A5 (6), 12791281.CrossRefGoogle Scholar
Rai, M. M. & Moin, P. 1991 Direct simulations of turbulent flow using finite-difference schemes. J. Comp. Phys. 96, 1553.Google Scholar
Sipp, D. & Jacquin, L. 1998 Elliptic instability in two-dimensional flattened Taylor-Green vortices. Phys. Fluids 10 (4), 839849.CrossRefGoogle Scholar
Sipp, D., Lauga, E. & Jacquin, L. 1999 Vortices in rotating systems: centrifugal, elliptic and hyperbolic type instabilities. Phys. Fluids 11 (12), 37163728.CrossRefGoogle Scholar
Thompson, M. C., Leweke, T. & Williamson, C. H. K. 2001 The physical mechanism of transition in bluff body wakes. J. Fluids Struct. 15, 607616.CrossRefGoogle Scholar
Williamson, C. H. K. 1988 The existence of two stages in the transition to three-dimensionality of a cylinder wake. Phys. Fluids 31, 31653168.CrossRefGoogle Scholar
Williamson, C. H. K. 1996 a Three-dimensional wake transition. J. Fluid Mech. 328, 345407.CrossRefGoogle Scholar
Williamson, C. H. K. 1996 b Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477539.CrossRefGoogle Scholar
Zhang, H. Q., Fey, U. F. & Noack, B. R. 1995 On the transition of the cylinder wake. Phys. Fluids 7 (4), 779794.CrossRefGoogle Scholar
Zuccher, S., Luchini, P. & Bottaro, A. 2004 Algebraic growth in a blasius boundary layer: optimal and robust control by mean suction in the nonlinear regime. J. Fluid Mech. 513, 135160.CrossRefGoogle Scholar