Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T21:45:43.368Z Has data issue: false hasContentIssue false

Strongly nonlinear Langmuir circulation and Rayleigh–Bénard convection

Published online by Cambridge University Press:  16 October 2008

G. P. CHINI*
Affiliation:
Mechanical Engineering Department, University of New Hampshire, Durham, NH 03824, USA

Abstract

Most rational asymptotic studies of non-rotating Rayleigh–Bénard convection and its cousins have been restricted to the linear or weakly nonlinear regime. An important exception occurs for large Rayleigh-number thermal convection at effectively infinite Prandtl number, i.e. fast but very viscous convection. In this scenario, the temperature field exhibits a layer-like structure surrounding an isothermal core and, crucially, the momentum equation linearizes. These features have been exploited by several authors to obtain semi-analytical nonlinear solutions. At O(1) Prandtl number, the fluid dynamics in the vortex core is dominated by nonlinear inertial rather than linear viscous effects, substantially altering the vortex structure. Here, it is shown that a combination of matched asymptotic analysis and global conservation constraints can be used to obtain a semi-analytic yet strongly nonlinear description of two related flows: (i) Rayleigh–Bénard convection between constant heat-flux boundaries at unit Prandtl number, and (ii) Langmuir circulation (LC), a wind and wave-driven convective flow commonly observed in natural water bodies. A simple analytical prediction is given for the roll-vortex amplitude, which is shown to be independent of the horizontal wavenumber of the convection pattern. In marked contrast to weakly nonlinear convection cells, the fully nonlinear asymptotic solutions exhibit flow features relevant to turbulent convection including the complete vertical redistribution of the basic-state temperature (or, for LC, downwind velocity) field. Comparisons with well-resolved pseudospectral numerical simulations of the full two-dimensional governing equations confirm the accuracy of the asymptotic results.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bassom, A. P. & Zhang, K. 1994 Stongly nonlinear convection cells in a rapidly rotating fluid layer. J. Geophys. Astrophys. Fluid Dyn. 76, 223238.CrossRefGoogle Scholar
Batchelor, G. K. 1956 On steady laminar flow with closed streamlines at large Reynolds number. J. Fluid Mech. 1, 177190.CrossRefGoogle Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics, 1st edn. Cambridge University Press.Google Scholar
Blennerhassett, P. J. & Bassom, A. P. 1991 Stongly nonlinear vortices in Bénard convection. IMA J. Appl. Maths 46.Google Scholar
Busse, F. H. & Clever, R. M. 1981 An asymptotic model of two-dimensional convection in the limit of low Prandtl number. J. Fluid Mech. 102, 7583.CrossRefGoogle Scholar
Caillol, P. & Grimshaw, R. 2004 Steady multipolar planar vortices with nonlinear critical layers. J. Geophys. Astrophys. Fluid Dyn. 98, 473506.CrossRefGoogle Scholar
Carslaw, H. S. & Jaeger, J. C. 1959 Conduction of Heat in Solids, 1st edn. Oxford University Press.Google Scholar
Chapman, C. J. & Proctor, M. R. E. 1980 Nonlinear Rayleigh–Bénard convection between poorly conducting boundaries. J. Fluid Mech. 101, 759782.CrossRefGoogle Scholar
Childress, S. 1979 Alpha-effect in flux ropes and sheets. Phys. Earth Planet. Inter. 20, 172180.CrossRefGoogle Scholar
Childress, S. & Gilbert, A. 1995 Stretch, Twist and Fold: The Fast Dynamo. Lecture Notes in Physics. Springer.Google Scholar
Cox, S. M. & Leibovich, S. 1993 Langmuir circulations in a surface layer bounded by a strong thermocline. J. Phys. Oceanogr. 23, 13301345.2.0.CO;2>CrossRefGoogle Scholar
Cox, S. M. & Leibovich, S. 1994 Large-scale Langmuir circulation and double-diffusive convection: evolution equations and flow transitions. J. Fluid Mech. 276, 189210.CrossRefGoogle Scholar
Cox, S. M. & Leibovich, S. 1997 Large-scale three-dimensional Langmuir circulation. Phys. Fluids 9, 28512863.CrossRefGoogle Scholar
Craik, A. D. D. 1977 The generation of Langmuir circulations by an instability mechanism. J. Fluid Mech. 81, 209223.CrossRefGoogle Scholar
Craik, A. D. D. & Leibovich, S. 1976 A rational model for Langmuir circulations. J. Fluid Mech. 73, 401426.CrossRefGoogle Scholar
Deardorff, J. W. & Willis, G. E. 1967 Investigation of turbulent thermal convection between horizontal plates. J. Fluid Mech. 28, 675704.CrossRefGoogle Scholar
Faisst, H. & Eckhardt, B. 2003 Traveling waves in pipe flow. Phys. Rev. Lett. 91, 224502.CrossRefGoogle ScholarPubMed
Faisst, H. & Eckhardt, B. 2004 Sensitive dependence on initial conditions in transition to turbulence in pipe flow. J. Fluid Mech. 504, 343352.CrossRefGoogle Scholar
Gough, D. O., Spiegel, E. A. & Toomre, J. 1975 Modal equations for cellular convection. J. Fluid Mech. 68, 695719.CrossRefGoogle Scholar
Jimenez, J. & Zufiria, J. A. 1987 A boundary-layer analysis of Rayleigh–Bénard convection at large Rayleigh number. J. Fluid Mech. 178, 5371.CrossRefGoogle Scholar
Julien, K. & Knobloch, E. 1997 Fully nonlinear oscillatory convection in a rotating layer. Phys. Fluids 9, 19061913.CrossRefGoogle Scholar
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291300.CrossRefGoogle Scholar
Kerswell, R. R., Tutty, O. R. & Drazin, P. G. 2004 Steady nonlinear waves in diverging channel flow. J. Fluid Mech. 501, 231250.CrossRefGoogle Scholar
Kim, S.-C. 1998 On Prandtl–Batchelor theory of a cylindrical eddy: asymptotic study. SIAM J. Appl. Maths 58, 13941413.CrossRefGoogle Scholar
Kim, S.-C. & Childress, S. 2001 Vorticity selection with multiple eddies in two-dimensional steady flow at high Reynolds number. SIAM J. Appl. Maths 61, 16051617.Google Scholar
Leibovich, S. 1977 On the evolution of the system of wind drift currents and Langmuir circulations in the ocean. Part 1. Theory and averaged current. J. Fluid Mech. 79, 715743.CrossRefGoogle Scholar
Leibovich, S. 1980 On wave–current interaction theories of Langmuir circulations. J. Fluid Mech. 99, 715724.CrossRefGoogle Scholar
Leibovich, S. 1983 The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech. 15, 391427.CrossRefGoogle Scholar
Li, M. & Garrett, C. 1993 Cell merging and the jet/downwelling ratio in Langmuir circulation. J. Mar. Res. 51, 737769.CrossRefGoogle Scholar
Lingevitch, J. F. & Bernoff, A. J. 1994 Advection of a passive scalar by a vortex couple in the small-diffusion limit. J. Fluid Mech. 270, 219249.CrossRefGoogle Scholar
Lyne, W. H. 1971 Unsteady viscous flow in a curved pipe. J. Fluid Mech. 45, 1331.CrossRefGoogle Scholar
Mamun, C. K. & Tuckerman, L. S. 1995 Asymmetry and Hopf bifurcation in spherical Couette flow. Phys. Fluids 7, 8091.CrossRefGoogle Scholar
Maslowe, S. A. 1986 Critical layers in shear flows. Annu. Rev. Fluid Mech. 18, 405432.CrossRefGoogle Scholar
Matthews, P. C. 1999 Asymptotic solutions for nonlinear magnetoconvection. J. Fluid Mech. 387, 397409.CrossRefGoogle Scholar
McWilliams, J. C., Sullivan, P. P. & Moeng, C. 1997 Langmuir turbulence in the ocean. J. Fluid Mech. 334, 130.CrossRefGoogle Scholar
Metcalfe, A. M. & Pedley, T. J. 2001 Falling plumes in bacterial bioconvection. J. Fluid Mech. 445, 121149.CrossRefGoogle Scholar
Moore, D. R. & Weiss, N. O. 1973 Two-dimensional Rayleigh–Bénard convection. J. Fluid Mech. 58, 289312.CrossRefGoogle Scholar
Nagata, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.CrossRefGoogle Scholar
Newell, A. C., Rand, D. A. & Russell, D. 1988 Turbulent transport and the random occurrence of coherent events. Physica D 33, 281303.Google Scholar
Newell, A. C., Passot, T. & Souli, M. 1990 The phase diffusion and mean drift equations for convection at finite Rayleigh numbers in large containers. J. Fluid Mech. 220, 187252.CrossRefGoogle Scholar
Novikov, A. & Papanicolaou, G. 2001 Eddy viscosity of cellular flows. J. Fluid Mech. 446, 173198.CrossRefGoogle Scholar
Olson, P. & Corcos, G. M. 1980 A boundary layer model for mantle convection with surface plates. Geophys. J. R. Astron. Soc. 62, 195219.CrossRefGoogle Scholar
Otero, J., Wittenberg, R. W., Worthing, R. & Doering, C. R. 2002 Bounds on Rayleigh–Bénard convection with an imposed heat flux. J. Fluid Mech. 473, 191199.CrossRefGoogle Scholar
Perkins, F. W. & Zweibel, E. G. 1987 A high magnetic Reynolds number dynamo. Phys. Fluids 30, 10791084.CrossRefGoogle Scholar
Rhines, P. B. & Young, W. R. 1983 How fast is a passive scalar mixed within closed streamlines? J. Fluid Mech. 133, 133145.CrossRefGoogle Scholar
Roberts, G. O. 1979 Fast viscous Bénard convection. J. Geophys. Astrophys. Fluid Dyn. 12, 235272.CrossRefGoogle Scholar
Shraiman, B. I. 1987 Diffusive transport in a Rayleigh–Bénard convection cell. Phys. Rev. A 36, 261267.CrossRefGoogle Scholar
Soward, A. M. 1987 Fast dynamo action in a steady flow. J. Fluid Mech. 180, 267295.CrossRefGoogle Scholar
Tejada-Martinez, A. E. & Grosch, C. E. 2007 Langmuir turbulence in shallow water. Part 2. Large-eddy simulation. J. Fluid Mech. 576, 63108.CrossRefGoogle Scholar
Thorpe, S. A. 2004 Langmuir circulation. Annu. Rev. Fluid Mech. 36, 5579.CrossRefGoogle Scholar
Toomre, J., Gough, D. O. & Spiegel, E. A. 1977 Numerical solutions of single-mode convection equations. J. Fluid Mech. 79, 131.CrossRefGoogle Scholar
Trefethen, L. N. 2000 Spectral Methods in Matlab. SIAM.CrossRefGoogle Scholar
Waleffe, F. 2001 Exact coherent structures in channel flow. J. Fluid Mech. 435, 93102.CrossRefGoogle Scholar
Wedin, H. & Kerswell, R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333371.CrossRefGoogle Scholar
Wood, W. W. 1957 Boundary layers whose streamlines are closed. J. Fluid Mech. 2, 7787.CrossRefGoogle Scholar