Article contents
Streamwise vortex-induced vibrations of cylinders with one and two degrees of freedom
Published online by Cambridge University Press: 13 October 2014
Abstract
Measurements are presented of the structural response and wake of a two-degree-of-freedom (2-DOF) pivoted cylinder undergoing streamwise vortex-induced vibrations (VIV), which were carried out using particle-image velocimetry (PIV). The results are compared with those of previous studies performed in the same experimental facility examining a cylinder free to move only in the streamwise direction (1-DOF). The aim of this study is to examine to what extent the results of previous work on streamwise-only VIV can be extrapolated to the more practical, multi-DOF case. The response regimes measured for the 1- and 2-DOF cases are similar, containing two response branches separated by a low-amplitude region. The first branch is characterised by negligible transverse motion and the appearance of both alternate and symmetric vortex shedding. The two wake modes compete in an unsteady manner; however, the competition does not appear to have a significant effect on either the streamwise or transverse motion. Comparison of the phase-averaged vorticity fields acquired in the second response branch also indicates that the additional DOF does not alter the vortex-shedding process. However, the additional DOF affects the cylinder-wake system in other ways; for the 1-DOF case the second branch can appear in three different forms (each associated with a different wake mode), while for the 2-DOF case the second branch only exists in one form, and does not exhibit hysteresis. The cylinder follows a figure-of-eight trajectory throughout the lock-in range. The phase angle between the streamwise and transverse motion decreases linearly with reduced velocity. This work highlights the similarities and differences between the fluid–structure interaction and wake dynamics associated with 1- and 2-DOF cylinders throughout the streamwise response regime, which has not received attention to date.
JFM classification
- Type
- Papers
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © 2014 Cambridge University Press
References
- 40
- Cited by