Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T21:57:35.635Z Has data issue: false hasContentIssue false

Streamline patterns and eddies in low-Reynolds-number flow

Published online by Cambridge University Press:  19 April 2006

D. J. Jeffrey
Affiliation:
Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge
J. D. Sherwood
Affiliation:
Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge

Abstract

The streamline patterns of some simple two-dimensional Stokes flows are studied and the results used both to understand and to predict the streamlines of flows in more complicated geometries, in particular the streamlines of flows that contain eddies or regions of closed streamlines. Initially, streamline patterns are studied locally, either around some special point, such as a stagnation point or a point where a streamline meets a wall, or in a special region, such as a corner. The use of these local analyses is illustrated by finding the streamlines for shear flow around a rotating cylinder; the illustration also shows how fluid in Stokes flow can be turned back on itself (‘blocked’). The local analyses of flow in a corner are used to understand the eddy patterns that have been discovered in a variety of flows. The eddies occur in corner-like regions and in these regions the flow can be regarded as the superposition of two components. One component, the eddy flow, is the result of flow outside the corner stirring the fluid in the corner, while the other is the direct result of local conditions in the corner. The competition between these two components determines whether eddies actually appear in a given flow. Finally, the approach developed here is applied to a new flow situation, namely a shear flow which is bounded by a moving wall and which contains a stationary cylinder touching the wall. The streamlines deduced for different ratios of the shear strength to the wall velocity show both new eddy patterns and unexpected regions of blocked flow.

Type
Research Article
Copyright
© 1980 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aderogba, K. & Blake, J. R. 1978 Bull. Aust. Math. Soc. 19, 309.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Bentwich, M. & Elata, C. 1965 Phys. Fluids 8, 2204.
Blake, J. R. 1971 Proc. Camb. Phil. Soc. 70, 303.
Bretherton, F. B. 1962 J. Fluid Mech. 12, 591.
Burkill, J. C. 1962 A First Course in Mathematical Analysis. Cambridge University Press.
Cox, R. G., Zia, I. Y. Z. & Mason, S. G. 1968 J. Coll. Interface Sci. 27, 7.
Dandapat, B. S. & Gupta, A. S. 1978 A.I.A.A. J. 16, 849.
Davis, A. M. J. & O'Neill, M. E. 1977 J. Fluid Mech. 81, 551.
Davis, A. M. J., O'Neill, M. E., Dorrepaal, J. M. & Ranger, K. B. 1976 J. Fluid Mech. 77, 625.
Dean, W. R. 1944 Proc. Camb. Phil. Soc. 40, 214.
Dean, W. R. & Montagnon, P. E. 1949 Proc. Camb. Phil. Soc. 45, 389.
Dorrepaal, J. M. & O'Neill, M. E. 1979 Quart. J. Mech. Appl. Math. 32, 95.
Hynes, T. P. 1978 Stability of thin films. Ph.D. dissertation, Cambridge University.
Lighthill, M. J. 1978 Waves in Fluids. Cambridge University Press.
Liron, N. 1978 J. Fluid Mech. 86, 705.
Liu, C. H. & Joseph, D. D. 1977 J. Fluid Mech. 80, 443.
Liu, C. H. & Joseph, D. D. 1978 S.I.A.M. J. Appl. Math. 24, 286.
Lorentz, H. A. 1896 Zittingsverlag Akad. v. Wert. 5, 168.
Lugt, H. J. & Schwiderski, E. W. 1965 Proc. Roy. Soc. Lond. A 285, 382.
Martin, B. 1969 Numerical Studies of steady-state extrusion processes Ph.D. dissertation. Cambridge University.
Michael, D. H. & O'Neill, M. E. 1977 J. Fluid Mech. 80, 785.
Moffatt, H. K. 1964a J. Fluid Mech. 18, 1.
Moffatt, H. K. 1964b Arch. Mech. Stosowanej 16, 365.
Moffatt, H. K. & Duffy, B. R. 1980 J. Fluid Mech. 96, 299.
Nir, A. & Acrivos, A. 1976 J. Fluid Mech. 78, 33.
Pan, F. & Acrivos, A. 1967 J. Fluid Mech. 28, 643.
Robertson, C. R. & Acrivos, A. 1970 J. Fluid Mech. 40, 685.
Schubert, G. 1967 J. Fluid Mech. 27, 647.
Schubert, G. 1968 A.I.A.A. J. 6, 549.
Schwiderski, E. W., Lugt, H. J. & Ugincius, P. 1966 J. Soc. Indust. Appl. Math. 14, 191.
Stimson, M. & Jeffery, G. B. 1926 Proc. Roy. Soc. Lond. A 111, 110.
Taylor, G. I. 1962 Scientific Papers, vol. 4, pp. 41013. Cambridge University Press 1971.
Van Dyke, M. 1975 Perturbation Methods in Fluid Mechanics. Palo Alto: Parabolic Press.
Wakiya, S. 1976 J. Fluid Mech, 78 737.
Wannier, G. H. 1950 Quart. Appl. Math. 8, 7.