Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T20:12:57.979Z Has data issue: false hasContentIssue false

Streaming-enhanced flow-mediated transport

Published online by Cambridge University Press:  18 September 2019

Tejaswin Parthasarathy
Affiliation:
Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Fan Kiat Chan
Affiliation:
Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Mattia Gazzola*
Affiliation:
Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
*
Email address for correspondence: [email protected]

Abstract

We investigate the ability of an active body (master) to manipulate a passive object (slave) purely via contactless flow-mediated mechanisms, motivated by potential applications in microfluidic devices and medicine (drug delivery purposes). We extend prior works on active–passive cylinder pairs by superimposing periodic oscillations to the master’s linear motion. In a viscous fluid, such oscillations produce an additional viscous streaming field, which is leveraged for enhancing slave transport. We see that superimposing oscillations robustly improves transport across a range of Reynolds numbers. Comparison with results without oscillations highlights the flow mechanisms at work, which we capitalize on to design (master) geometries for augmented transport. These principles are found to extend to three-dimensional active–passive shapes as well.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, D., Mao, X., Juluri, B. K. & Huang, T. J. 2009 A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluid Nanofluid 7 (5), 727731.Google Scholar
Alben, S. 2009 Wake-mediated synchronization and drafting in coupled flags. J. Fluid Mech. 641, 489496.Google Scholar
Bergmann, M. & Iollo, A. 2011 Modeling and simulation of fish-like swimming. J. Comput. Phys. 230 (2), 329348.Google Scholar
Bertelsen, A., Svardal, A. & Tjotta, S. 1973 Nonlinear streaming effects associated with oscillating cylinders. J. Fluid Mech. 59 (03), 493511.Google Scholar
Borazjani, I. & Sotiropoulos, F. 2008 Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. J. Expl Biol. 211 (10), 15411558.Google Scholar
Boschitsch, B. M., Dewey, P. A. & Smits, A. J. 2014 Propulsive performance of unsteady tandem hydrofoils in an in-line configuration. Phys. Fluids 26 (5), 051901.Google Scholar
Brady, J. F. & Bossis, G. 1988 Stokesian dynamics. Annu. Rev. Fluid Mech. 20, 111157.Google Scholar
Ceylan, H., Giltinan, J., Kozielski, K. & Sitti, M. 2017 Mobile microrobots for bioengineering applications. Lab on a Chip 17 (10), 17051724.Google Scholar
Chang, E. J. & Maxey, M. R. 1994 Unsteady flow about a sphere at low to moderate Reynolds number. Part 1. Oscillatory motion. J. Fluid Mech. 277, 347379.Google Scholar
Chong, K., Kelly, S. D., Smith, S. & Eldredge, J. D. 2013 Inertial particle trapping in viscous streaming. Phys. Fluids 25 (3), 033602.Google Scholar
Chong, K., Kelly, S. D., Smith, S. T. & Eldredge, J. D. 2016 Transport of inertial particles by viscous streaming in arrays of oscillating probes. Phys. Rev. E 93 (1), 013109.Google Scholar
Davidson, B. J. & Riley, N. 1972 Jets induced by oscillatory motion. J. Fluid Mech. 53 (02), 287303.Google Scholar
Dombrowski, T., Jones, S. K., Katsikis, G., Bhalla, A. P. S., Griffith, B. E. & Klotsa, D. 2019 Transition in swimming direction in a model self-propelled inertial swimmer. Phys. Rev. Fluids 4 (2), 021101.Google Scholar
Eldredge, J. 2010 A reconciliation of viscous and inviscid approaches to computing locomotion of deforming bodies. Exp. Mech. 50, 13491353.Google Scholar
Gazzola, M., Chatelain, P., van Rees, W. M. & Koumoutsakos, P. 2011a Simulations of single and multiple swimmers with non-divergence free deforming geometries. J. Comput. Phys. 230 (19), 70937114.Google Scholar
Gazzola, M., Dudte, L. H., McCormick, A. G. & Mahadevan, L. 2018 Forward and inverse problems in the mechanics of soft filaments. R. Soc. Open Sci. 5 (6), 171628.Google Scholar
Gazzola, M., Hejazialhosseini, B. & Koumoutsakos, P. 2014 Reinforcement learning and wavelet adapted vortex methods for simulations of self-propelled swimmers. SIAM J. Sci. Comput. 36 (3), B622B639.Google Scholar
Gazzola, M., Mimeau, C., Tchieu, A. A. & Koumoutsakos, P. 2012a Flow mediated interactions between two cylinders at finite Re numbers. Phys. Fluids 24 (4), 043103.Google Scholar
Gazzola, M., van Rees, W. M. & Koumoutsakos, P. 2012b C-start: optimal start of larval fish. J. Fluid Mech. 698, 518.Google Scholar
Gazzola, M., Tchieu, A. A., Alexeev, D., de Brauer, A. & Koumoutsakos, P. 2015 Learning to school in the presence of hydrodynamic interactions. J. Fluid Mech. 789, 726749.Google Scholar
Gazzola, M., Vasilyev, O. V. & Koumoutsakos, P. 2011b Shape optimization for drag reduction in linked bodies using evolution strategies. Comput. Struct. 89 (11–12), 12241231.Google Scholar
He, Y., Bi, Y., Hua, Y., Liu, D., Wen, S., Wang, Q., Li, M., Zhu, J., Lin, T., He, D. et al. 2011 Ultrasound microbubble-mediated delivery of the siRNAs targeting MDR1 reduces drug resistance of yolk sac carcinoma L2 cells. J. Expl Clinical Cancer Res. 30 (1), 104.Google Scholar
Holtsmark, J., Johnsen, I., Sikkeland, T. & Skavlem, S. 1954 Boundary layer flow near a cylindrical obstacle in an oscillating, incompressible fluid. J. Acoust. Soc. Am. 26 (1), 2639.Google Scholar
House, T. A., Lieu, V. H. & Schwartz, D. T. 2014 A model for inertial particle trapping locations in hydrodynamic tweezers arrays. J. Micromech. Microengng 24 (4), 045019.Google Scholar
Hunt, J. C. R., Abell, C. J., Peterka, J. A. & Woo, H. 1978 Kinematical studies of the flows around free or surface-mounted obstacles; applying topology to flow visualization. J. Fluid Mech. 86 (1), 179200.Google Scholar
Ishikawa, T., Simmonds, M. P. & Pedley, T. J. 2006 Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119160.Google Scholar
Klotsa, D., Baldwin, K. A., Hill, R. J. A., Bowley, R. M. & Swift, M. R. 2015 Propulsion of a two-sphere swimmer. Phys. Rev. Lett. 115 (24), 248102.Google Scholar
Koch, D. L. & Subramanian, G. 2011 Collective hydrodynamics of swimming microorganisms: living fluids. Annu. Rev. Fluid Mech. 43, 637659.Google Scholar
Kotas, C. W., Yoda, M. & Rogers, P. H. 2007 Visualization of steady streaming near oscillating spheroids. Exp. Fluids 42 (1), 111121.Google Scholar
Kotas, C. W., Yoda, M. & Rogers, P. H. 2008 Steady streaming flows near spheroids oscillated at multiple frequencies. Exp. Fluids 45 (2), 295307.Google Scholar
Kubo, S. & Kitano, Y. 1980 Secondary flow induced by a circular cylinder oscillating in two directions. J. Phys. Soc. Japan 49 (5), 20262037.Google Scholar
Lane, C. A. 1955 Acoustical streaming in the vicinity of a sphere. J. Acoust. Soc. Am. 27 (6), 10821086.Google Scholar
Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72 (9), 096601.Google Scholar
Liao, J. C. 2007 A review of fish swimming mechanics and behaviour in altered flows. Phil. Trans. R. Soc. Lond. B 362 (1487), 19731993.Google Scholar
Liao, J. C., Beal, D. N., Lauder, G. V. & Triantafyllou, M. S. 2003 Fish exploiting vortices decrease muscle activity. Science 302 (5650), 15661569.Google Scholar
Lieu, V. H., House, T. A. & Schwartz, D. T. 2012 Hydrodynamic tweezers: impact of design geometry on flow and microparticle trapping. Analyt. Chem. 84 (4), 19631968.Google Scholar
Lin, Z., Liang, D. & Zhao, M. 2018 Effects of damping on flow-mediated interaction between two cylinders. J. Fluids Engng 140 (9), 091106.Google Scholar
Liu, R. H., Yang, J., Pindera, M. Z., Athavale, M. & Grodzinski, P. 2002 Bubble-induced acoustic micromixing. Lab on a Chip 2 (3), 151157.Google Scholar
Lutz, B. R., Chen, J. & Schwartz, D. T. 2005 Microscopic steady streaming eddies created around short cylinders in a channel: flow visualization and stokes layer scaling. Phys. Fluids 17 (2), 023601.Google Scholar
Lutz, B. R., Chen, J. & Schwartz, D. T. 2006 Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies. Analyt. Chem. 78 (15), 54295435.Google Scholar
Marmottant, P. & Hilgenfeldt, S. 2003 Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423 (6936), 153156.Google Scholar
Marmottant, P. & Hilgenfeldt, S. 2004 A bubble-driven microfluidic transport element for bioengineering. Proc. Natl Acad. Sci. USA 101 (26), 95239527.Google Scholar
Metzger, B., Nicolas, M. & Guazzelli, E. 2007 Falling clouds of particles in viscous fluids. J. Fluid Mech. 580, 283301.Google Scholar
Nair, S. & Kanso, E. 2007 Hydrodynamically coupled rigid bodies. J. Fluid Mech. 592, 393411.Google Scholar
Pagan-Diaz, G. J., Zhang, X., Grant, L., Kim, Y., Aydin, O., Cvetkovic, C., Ko, E., Solomon, E., Hollis, J., Kong, H. et al. 2018 Simulation and fabrication of stronger, larger, and faster walking biohybrid machines. Adv. Funct. Mater 28 (23), 1801145.Google Scholar
Park, S. J., Gazzola, M., Park, K. S., Park, S., Di Santo, V., Blevins, E. L., Lind, J. U., Campbell, P. H., Dauth, S., Capulli, A. K. et al. 2016 Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353 (6295), 158162.Google Scholar
Perry, A. E. & Chong, M. S. 1987 A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19 (1), 125155.Google Scholar
Rallabandi, B., Wang, C. & Hilgenfeldt, S. 2017 Analysis of optimal mixing in open-flow mixers with time-modulated vortex arrays. Phys. Rev. Fluids 2 (6), 064501.Google Scholar
Riley, N. 1966 On a sphere oscillating in a viscous fluid. Q. J. Mech. Appl. Maths 19 (4), 461472.Google Scholar
Riley, N. 1967 Oscillatory viscous flows. Review and extension. IMA J. Appl. Maths 3 (4), 419434.Google Scholar
Riley, N. 2001 Steady streaming. Annu. Rev. Fluid Mech. 33 (1), 4365.Google Scholar
Ristroph, L. & Zhang, J. 2008 Anomalous hydrodynamic drafting of interacting flapping flags. Phys. Rev. Lett. 101 (19), 194502.Google Scholar
Ryu, K., Chung, S. K. & Cho, S. K. 2010 Micropumping by an acoustically excited oscillating bubble for automated implantable microfluidic devices. J. Assoc. Lab. Autom. 15 (3), 163171.Google Scholar
Stuart, J. T. 1966 Double boundary layers in oscillatory viscous flow. J. Fluid Mech. 24 (04), 673687.Google Scholar
Subramanian, G. & Koch, D. L. 2008 Evolution of clusters of sedimenting low-Reynolds-number particles with Oseen interactions. J. Fluid Mech. 603, 63100.Google Scholar
Tabakova, S. S. & Zapryanov, Z. D. 1982a On the hydrodynamic interaction of two spheres oscillating in a viscous fluid. i. Axisymmetrical case. Z. Angew. Math. Phys. 33 (3), 344357.Google Scholar
Tabakova, SS. & Zapryanov, ZD. 1982b On the hydrodynamic interaction of two spheres oscillating in a viscous fluid. ii. Three dimensional case. Z. Angew. Math. Phys. 33 (4), 487502.Google Scholar
Tatsuno, M. 1975 Circulatory streaming in the vicinity of an oscillating triangular cylinder. J. Phys. Soc. Japan 38 (1), 257264.Google Scholar
Tchieu, A. A., Crowdy, D. & Leonard, A. 2010 Fluid–structure interaction of two bodies in an inviscid fluid. Phys. Fluids 22 (10), 107101.Google Scholar
Tchieu, A. A., Kanso, E. & Newton, P. K. 2012 The finite-dipole dynamical system. Proc. R. Soc. Lond. A 468 (2146), 30063026.Google Scholar
Thameem, R., Rallabandi, B. & Hilgenfeldt, S. 2016 Particle migration and sorting in microbubble streaming flows. Biomicrofluidics 10 (1), 014124.Google Scholar
Tovar, A. R., Patel, M. V. & Lee, A. P. 2011 Lateral air cavities for microfluidic pumping with the use of acoustic energy. Microfluid Nanofluid 10 (6), 12691278.Google Scholar
Van Dyke, M. 1982 An Album of Fluid Motion, vol. 176. Parabolic.Google Scholar
Voth, G. A., Bigger, B., Buckley, M. R., Losert, W., Brenner, M. P., Stone, H. A. & Gollub, J. P. 2002 Ordered clusters and dynamical states of particles in a vibrated fluid. Phys. Rev. Lett. 88 (23), 234301.Google Scholar
Wang, C., Jalikop, S. V. & Hilgenfeldt, S. 2011 Size-sensitive sorting of microparticles through control of flow geometry. Appl. Phys. Lett. 99 (3), 034101.Google Scholar
Weihs, D. 1973 Hydromechanics of fish schooling. Nature 241 (5387), 290291.Google Scholar
Williams, B. J., Anand, S. V., Rajagopalan, J. & Saif, M. A. 2014 A self-propelled biohybrid swimmer at low Reynolds number. Nat. Commun. 5, 3081.Google Scholar
Supplementary material: File

Parthasarathy et al. supplementary material

Parthasarathy et al. supplementary material

Download Parthasarathy et al. supplementary material(File)
File 35.5 MB