Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T22:02:40.555Z Has data issue: false hasContentIssue false

Stratified turbulence forced in rotational and divergent modes

Published online by Cambridge University Press:  14 August 2007

E. LINDBORG
Affiliation:
Linné Flow Center, Department of Mechanics, KTH, SE-100 44 Stockholm, Sweden
G. BRETHOUWER
Affiliation:
Linné Flow Center, Department of Mechanics, KTH, SE-100 44 Stockholm, Sweden

Abstract

We perform numerical box simulations of strongly stratified turbulence. The equations solved are the Boussinesq equations with constant Brunt–Väisälä frequency and forcing either in rotational or divergent modes, or, with another terminology, in vortical or wave modes. In both cases, we observe a forward energy cascade and inertial-range scaling of the horizontal kinetic and potential energy spectra. With forcing in rotational modes, there is approximate equipartition of kinetic energy between rotational and divergent modes in the inertial range. With forcing in divergent modes the results are sensitive to the vertical forcing wavenumber kfv. If kfv is sufficiently large the dynamics is very similar to the dynamics of the simulations which are forced in rotational modes, with approximate equipartition of kinetic energy in rotational and divergent modes in the inertial range. Frequency spectra of rotational, divergent and potential energy are calculated for individual Fourier modes. Waves are present at low horizontal wavenumbers corresponding to the largest scales in the boxes. In the inertial range, the frequency spectra exhibit no distinctive peaks in the internal wave frequency. In modes for which the vertical wavenumber is considerably larger than the horizontal wavenumber, the frequency spectra of rotational and divergent modes fall on top of each other. The simulation results indicate that the dynamics of rotational and divergent modes develop on the same time scale in stratified turbulence. We discuss the relevance of our results to atmospheric and oceanic dynamics. In particular, we review a number of observational reports indicating that stratified turbulence may be a prevalent dynamic process in the ocean at horizontal scales of the order of 10 or 100 m up to several kilometres.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvelius, K. 1999 Random forcing of three-dimensional homogeneous turbulence. Phys. Fluids 11, 18801889.Google Scholar
Bartello, P. 1995 Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci. 52, 44104428.2.0.CO;2>CrossRefGoogle Scholar
Billant, P. & Chomaz, J.-M. 2001 Self-similarity of strongly stratified inviscid flows. Phys. Fluids 13, 16451651.Google Scholar
Black, C. F. & Gluckman, P. M. 1965 Large scale structure of turbulence beneath the mixed layer. Trans. Conf. on Ocean Science and Ocean Engineering, vol. 2, p. 687. Marine Technology Society, Washington, DC.Google Scholar
Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J.-M. 2007 Scaling analysis and numerical simulation of strongly stratified turbulent flows. J. Fluid Mech. (in press).CrossRefGoogle Scholar
Briscoe, M. G. 1975 Preliminary results from the trimoored internal wave experiment (IWEX). J. Geophys. Res. 80, 38723884.Google Scholar
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zhang, T. A. 1988 Spectral Methods in Fluid Dynamics, pp. 8586, 205–206. Springer.Google Scholar
Cho, J. Y. N., Newell, E. & Barrick, J. D. 1999 Horizontal wavenumber spectra of winds, temperature and trace gases during the Pacific Exploratory Missions: 2. Gravity waves, quasi-two-dimensional turbulence and vortical modes. J. Geophys. Res. 104, 1629716308.CrossRefGoogle Scholar
Cho, J. Y. N. & Lindborg, E. 2001 Horizontal velocity structure functions in the upper troposphere and lower stratosphere 1. Observations. J. Geophys. Res. 106, 1022310232.Google Scholar
Dewan, E. 1997 Saturated-cascade similitude theory of gravity wave spectra J. Geophys. Res. 102, 2979929817.Google Scholar
Dugan, J. P., Morris, W. D. & Okawa, B. S. 1986 Horizontal wave number-distribution of potential energy in the ocean J. Geophys. Res. 91, 1299313000.Google Scholar
Garret, C. & Munk, W. 1972 Space-time scales of internal waves. Geophys. Fluid Dyn. 2, 225264.CrossRefGoogle Scholar
Garret, C. & Munk, W. 1975 Space-time scales of internal waves: A progress report. J. Geophys. Res. 80, 291297.Google Scholar
Garret, C. & Munk, W. 1979 Internal waves in the ocean. Annu. Rev. Fluid. Mech. 11, 339369.CrossRefGoogle Scholar
Gargett, P. J., Hendricks, P. J., Sanford, T. B., Osborn, T. R. & Williams A. J. 1981 A composite spectrum of vertical shear in the open ocean. J. Phys. Oceanogr. 11, 12581271.Google Scholar
Godeferd, F. S. & Cambon, C. 1994 Detailed investigation of energy transfers in homogenous stratified turbulence. Phys. Fluids 6, 20842100.Google Scholar
Gregg, M. C. & Sanford, T. B. 1988 The dependence of turbulent dissipation on stratification in a diffusively stable thermocline. J. Geophys. Res. 93, 1238112392.Google Scholar
Hollbrook, W. S. & Fer, I. 2005 Ocean internal wave spectra inferred from seismic reflection transects. Geophys. Res. Lett. 32, L15604, 14.Google Scholar
Kaneda, Y., Ishihara, T., Yokokawa, M., Uno, A. & Itakura, K. 2003 Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids 15, L21L24.Google Scholar
Katz, E. J. 1973 Profile of an isopycnal surface in the main thermocline of the sargasso sea J. Phys. Oceanogr. 3, 448456.Google Scholar
Kitamura, Y. & Matsuda, Y. 2006 The k H−3 and k H−5/3 energy spectra in stratified turbulence. Geophys. Res. Lett. 33, LO5809.Google Scholar
Koshyk, J. N. & Hamilton, K. 2001 The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere-stratosphere-mesosphere GCM. J. Atmos. Sci. 58, 329348.2.0.CO;2>CrossRefGoogle Scholar
Lafond, E. C. & Lafond, K. G. 1967 Temperature structure in the upper 240 meters of the sea. The New Thrust Seaward, pp. 2345. Marine Technological Society, Washington DC.Google Scholar
Lamorgese, A. G., Caughey, D. A. & Pope, S. B. 2005 Direct numerical simulations of homogeneous turbulence with hyperviscosity Phys. Fluids 17, 015106.Google Scholar
Laval, J.-P. McWilliams, J. C. & Dubrulle, B. 2003 Forced stratified turbulence: Succesive transition with Reynolds number. Phys. Rev. E 68, 036308.Google Scholar
Lelong, M.-P. & Riley, J. J. 1991 Internal wave-vortical mode interactions in strongly stratified flows. J. Fluid Mech. 232, 119.Google Scholar
Lindborg, E. 1999 Can the atmospheric kinetic energy be explained by two-dimensional turbulence? J. Fluid Mech. 388, 259288.CrossRefGoogle Scholar
Lindborg, E. 2005 The effect of rotation on the mesoscale energy cascade in the free atmosphere. Geophys. Res. Lett. 32, L01809.Google Scholar
Lindborg, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207242.CrossRefGoogle Scholar
Lindborg, E. 2007 Horizontal spectra of vertical vorticity and horizontal divergence in the upper troposphere and lower stratosphere. J. Atmos. Sci. (in press).CrossRefGoogle Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics II. The MIT Press.Google Scholar
Müller, P., Lien, R.-C. & Williams, R. 1988 Estimates of potential vorticity at small scales in the ocean J. Phys. Oceanogr. 18, 401416.Google Scholar
Munk, W. 1981 Internal waves and small-scale processes. In Evolution of Physcial Oceanogrophy (ed. Warren, B. A. & Wunsh, C.), pp. 264291. The MIT Press.Google Scholar
Nastrom, G. D. & Gage, K. S. & Jasperson, W. H. 1984 Kinetic energy spectrum of large- and mesoscale atmospheric processes. Nature 310, 3638.CrossRefGoogle Scholar
Riley, J. J. & Lelong, M.-P. 2000 Fluid motions in the presence of strong stable stratification. Annu. Rev. Fluid Mech. 32, 613657.CrossRefGoogle Scholar
Riley, J. J. & deBruynKops, S. T. 2003 Dynamics of turbulence strongly influenced by buoyancy Phys. Fluids 15, 20472059.CrossRefGoogle Scholar
Scott, R. B. & Wang, F. M. 2005 Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr. 35, 16501666.CrossRefGoogle Scholar
Skamarock, W. C. 2004 Evaluating Mesoscale NWP models using kinetic energy spectra. Mon. Weath. Rev. 132, 30193032.CrossRefGoogle Scholar
Smith, L. M. & Waleffe, F. 2002 Generation of slow large scales in forced rotating stratified turbulence. J. Fluid Mech. 451, 145168.Google Scholar
Soloviev, A., Lukas, R. & Hacker, P. 2000 Horizontal structure of the upper ocean velocity and density fields in the western pacific warm pool: depth range from 20 to 250 m J. Phys. Oceanogr. 30, 416432.2.0.CO;2>CrossRefGoogle Scholar
Takahashi, Y. O., Hamilton, K. & Ohfuchi, W. 2006 Explicit global simulation of the mesoscale spectrum of atmospheric motions. Geophys. Res. Lett. 33, L12812.Google Scholar
Taylor, G. I. 1935 Statistical theory of turbulence. Proc. R. Soc. Lond. A 151, 421478.Google Scholar
Waite, M. L. & Bartello, P. 2004 Stratified turbulence dominated by vortical motion. J. Fluid Mech. 517, 281308.CrossRefGoogle Scholar
Waite, M. L. & Bartello, P. 2006 Stratified turbulence generated by internal gravity waves. J. Fluid Mech. 546, 313339.Google Scholar
Williams, R. B. 1968 Horizontal temperature variations in the upper water of the open ocean. J. Geophys. Res. 73, 71277132.Google Scholar
Vinnichenko, V. K. 1970 The kinetic energy spectrum in the free atmosphere – 1 second to 5 years. Tellus 22, 158166.CrossRefGoogle Scholar
Voorhis, A. D. & Perkins, H. T. 1966 The spatial spectrum of short-wave temperature fluctuations in the near-surface thermocline Deep-Sea Res. 13, 641654.Google Scholar