Article contents
Stratified Ekman layers evolving under a finite-time stabilizing buoyancy flux
Published online by Cambridge University Press: 12 February 2018
Abstract
Stratified flow in nocturnal boundary layers is studied using direct numerical simulation (DNS) of the Ekman layer, a model problem that is useful to understand atmospheric boundary-layer (ABL) turbulence. A stabilizing buoyancy flux is applied for a finite time to a neutral Ekman layer. Based on previous studies and the simulations conducted here, the choice of $L_{\mathit{cri}}^{+}=Lu_{\ast }/\unicode[STIX]{x1D708}\approx 700$ ($L$ is the Obukhov length scale and $u_{\ast }$ is the friction velocity) provides a cooling flux that is sufficiently strong to cause the initial collapse of turbulence. The turbulent kinetic energy decays over a time scale of $4.06L/u_{\ast }$ during the collapse. The simulations suggest that imposing $L_{\mathit{cri}}^{+}\approx 700$ on the neutral Ekman layer results in turbulence collapse during the initial transient, independent of Reynolds number, $Re_{\ast }$. However, the long-time state of the flow, i.e. turbulent with spatial intermittency or non-turbulent, is found to depend on the initial value of $Re_{\ast }$ since the cooling flux and resultant stratification increase with $Re_{\ast }$ for a given $L^{+}$. The lower-$Re_{\ast }$ cases have sustained turbulence with shear and stratification profiles that evolve in a manner such that the gradient Richardson number, $Ri_{g}$, in the near-surface layer, including the low-level jet, remains subcritical. The highest $Re_{\ast }$ case has supercritical $Ri_{g}$ in the low-level jet and turbulence does not recover. A theoretical discussion is performed to infer that the bulk Richardson number, $Ri_{b}$, is more suitable than $L^{+}$ to determine the fate of stratified Ekman layers at late time. DNS results support the implications of $Ri_{b}$ for the effect of initial $Re_{\ast }$ and $L^{+}$ on the flow.
- Type
- JFM Papers
- Information
- Copyright
- © 2018 Cambridge University Press
References
- 7
- Cited by