Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T05:26:22.278Z Has data issue: false hasContentIssue false

Stochastic models for the droplet motion and evaporation in under-resolved turbulent flows at a large Reynolds number

Published online by Cambridge University Press:  03 December 2021

M.A. Gorokhovski*
Affiliation:
Laboratoire de Mécanique des Fluides et d'Acoustique, CNRS – Ecole Centrale de Lyon – INSA – Université Claude Bernard Lyon 1, 69134Ecully
S.K. Oruganti
Affiliation:
Laboratoire de Mécanique des Fluides et d'Acoustique, CNRS – Ecole Centrale de Lyon – INSA – Université Claude Bernard Lyon 1, 69134Ecully Volvo Group Trucks Technology, 99 Route de Lyon, 69806Saint Priest Cedex, France
*
Email address for correspondence: [email protected]

Abstract

In this work we introduce a Lagrangian stochastic model for particle motion and evaporation to be used in large-eddy simulations (LES) of turbulent liquid sprays. Effects of small-scale intermittency, usually under-resolved in LES, are explicitly included via modelling of the energy dissipation rate seen by a droplet along its trajectory. Namely, the dissipation rate is linked to the norm of the droplet sub-filtered acceleration which is included in the droplet motion equation. This norm, along with the direction of the droplet sub-filtered acceleration, is simulated as a stochastic process. With increasing Reynolds number, the distribution of the sub-filtered acceleration develops longer tails, with a slower decay in auto-correlation functions of the norm and direction of this acceleration. The stochastic models are specified for particles larger and smaller the Kolmogorov length scale. The assumption of the droplet evaporation model is similar, i.e. the evaporation rate is strongly enhanced when a droplet is subjected to very localized zones of intense velocity gradients. Thereby, the overall evaporation process is assumed to be a succession of two steady-state sub-processes with equal intensities, i.e. evaporation and vapour mixing. Then the stochastic properties of the overall evaporation rate are also controlled by fluctuations of the energy dissipation rate along the droplet path, and with increasing Reynolds number, the intensity of fluctuations of this rate is also increasing. The assessment of the presented stochastic models in LES of high-speed non-evaporating and evaporating sprays show the accurate prediction of experimental data on relatively coarser grids along with a remarkably weaker sensitivity to the grid spacing. The joint statistics and Voronoi tessellations exhibit strong intermittency of evaporation rate. The intensity of turbulence along the droplet pathway substantially promotes the vaporization rate.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ameen, M.M., Pei, Y. & Som, S. 2016 Computing statistical averages from large eddy simulation of spray flames. Tech. Rep. 2016-01-0585. SAE Technical Paper.CrossRefGoogle Scholar
Amsden, A.A., O'Rourke, P.J. & Butler, T.D. 1989 KIVA-II: A computer program for chemically reactive flows with sprays. Tech. Rep. LA-11560-MS. Los Alamos National Lab. (LANL), Los Alamos, NM (United States).CrossRefGoogle Scholar
Apte, S.V., Mahesh, K. & Moin, P. 2009 Large-eddy simulation of evaporating spray in a coaxial combustor. Proc. Combust. Inst. 32 (2), 22472256.CrossRefGoogle Scholar
Barge, A. & Gorokhovski, M. 2020 Acceleration of small heavy particles in homogeneous shear flow: direct numerical simulation and stochastic modelling of under-resolved intermittent turbulence. J. Fluid Mech. 892, A28.CrossRefGoogle Scholar
Beale, J.C. & Reitz, R.D. 1999 Modeling spray atomization with the Kelvin–Helmholtz/Rayleigh–Taylor hybrid model. Atomiz. Sprays 9 (6), 623650.Google Scholar
Bellan, J. 2000 Supercritical (and subcritical) fluid behavior and modeling: drops, streams, shear and mixing layers, jets and sprays. Prog. Energy Combust Sci. 26 (4–6), 329366.CrossRefGoogle Scholar
Bharadwaj, N., Rutland, C.J. & Chang, S.-M. 2009 Large eddy simulation modelling of spray-induced turbulence effects. Intl J. Engine Res. 10 (2), 97119.CrossRefGoogle Scholar
Bini, M. & Jones, W.P. 2008 Large-eddy simulation of particle-laden turbulent flows. J. Fluid Mech. 614, 207252.CrossRefGoogle Scholar
Bini, M. & Jones, W.P. 2009 Large eddy simulation of an evaporating acetone spray. Intl J. Heat Fluid Flow 30 (3), 471480.CrossRefGoogle Scholar
Birouk, M. & Gökalp, I. 2002 A new correlation for turbulent mass transfer from liquid droplets. Intl J. Heat Mass Transfer 45 (1), 3745.CrossRefGoogle Scholar
Birouk, M. & Gökalp, I. 2006 Current status of droplet evaporation in turbulent flows. Prog. Energy Combust. Sci. 32 (4), 408423.CrossRefGoogle Scholar
Chomiak, J. & Karlsson, A. 1996 Flame liftoff in diesel sprays. In Symposium (International) on Combustion, vol. 26, pp. 2557–2564. Elsevier.CrossRefGoogle Scholar
Crua, C., Manin, J. & Pickett, L.M. 2017 On the transcritical mixing of fuels at diesel engine conditions. Fuel 208, 535548.CrossRefGoogle Scholar
Dalla Barba, F. & Picano, F. 2018 Clustering and entrainment effects on the evaporation of dilute droplets in a turbulent jet. Phys. Rev. Fluids 3 (3), 034304.CrossRefGoogle Scholar
De Rivas, A. & Villermaux, E. 2016 Dense spray evaporation as a mixing process. Phys. Rev. Fluids 1 (1), 014201.CrossRefGoogle Scholar
Donzis, D.A., Yeung, P.K. & Sreenivasan, K.R. 2008 Dissipation and enstrophy in isotropic turbulence: resolution effects and scaling in direct numerical simulations. Phys. Fluids 20 (4), 045108.CrossRefGoogle Scholar
Elsinga, G.E. & Marusic, I. 2010 Universal aspects of small-scale motions in turbulence. J. Fluid Mech. 662 (514–539), 20.CrossRefGoogle Scholar
Faeth, G.M. 1977 Current status of droplet and liquid combustion. In Energy and Combustion Science, pp. 149–182. Elsevier.CrossRefGoogle Scholar
Falgout, Z., Rahm, M., Sedarsky, D. & Linne, M. 2016 Gas/fuel jet interfaces under high pressures and temperatures. Fuel 168, 1421.CrossRefGoogle Scholar
Gorokhovski, M. & Zamansky, R. 2014 Lagrangian simulation of large and small inertial particles in a high Reynolds number flow: Stochastic simulation of subgrid turbulence/particle interactions. In Center for Turbulence Research, Proceedings of the Summer Program, pp. 37–46.Google Scholar
Gorokhovski, M. & Zamansky, R. 2018 Modeling the effects of small turbulent scales on the drag force for particles below and above the kolmogorov scale. Phys. Rev. Fluids 3 (3), 034602.CrossRefGoogle Scholar
Goto, S. 2008 A physical mechanism of the energy cascade in homogeneous isotropic turbulence. J. Fluid Mech. 605, 355366.CrossRefGoogle Scholar
Hiromitsu, N. & Kawaguchi, O. 1995 Influence of flow turbulence on the evaporation rate of a suspended droplet in a hot air flow. Heat Transfer Japan Res. 24 (8), 689700.Google Scholar
Hu, B., Banerjee, S., Liu, K., Rajamohan, D., Deur, J.M., Xue, Q., Som, S., Senecal, P.K. & Pomraning, E. 2015 Large eddy simulation of a turbulent non-reacting spray jet. In Internal Combustion Engine Division Fall Technical Conference, vol. 57281, p. V002T06A007. American Society of Mechanical Engineers.CrossRefGoogle Scholar
Hunt, J.C.R., Wray, A.A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Studying Turbulence Using Numerical Simulation Databases-I1, p. 193.Google Scholar
Idicheria, C.A. & Pickett, L.M. 2007 Quantitative mixing measurements in a vaporizing diesel spray by Rayleigh imaging. SAE Trans. 116, 490504.Google Scholar
Irannejad, A. & Jaberi, F. 2014 Large eddy simulation of turbulent spray breakup and evaporation. Intl J. Multiphase Flow 61, 108128.CrossRefGoogle Scholar
Iyer, K.P., Sreenivasan, K.R. & Yeung, P.K. 2020 Scaling exponents saturate in three-dimensional isotropic turbulence. Phys. Rev. Fluids 5 (5), 054605.CrossRefGoogle Scholar
Jenny, P., Roekaerts, D. & Beishuizen, N. 2012 Modeling of turbulent dilute spray combustion. Prog. Energy Combust. Sci. 38 (6), 846887.CrossRefGoogle Scholar
Jofre, L. & Urzay, J. 2021 Transcritical diffuse-interface hydrodynamics of propellants in high-pressure combustors of chemical propulsion systems. Prog. Energy Combust. Sci. 82, 100877.CrossRefGoogle Scholar
Johnson, P.L. & Meneveau, C. 2018 Predicting viscous-range velocity gradient dynamics in large-eddy simulations of turbulence. J. Fluid Mech. 837, 80114.CrossRefGoogle Scholar
Kaario, O., Vuorinen, V., Hulkkonen, T., Keskinen, K., Nuutinen, M., Larmi, M. & Tanner, F.X. 2013 Large eddy simulation of high gas density effects in fuel sprays. Atomiz. Sprays 23 (4), 297325.CrossRefGoogle Scholar
Kastengren, A., Ilavsky, J., Viera, J.P., Payri, R., Duke, D.J., Swantek, A., Tilocco, F.Z., Sovis, N. & Powell, C.F. 2017 Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering. Intl J. Multiphase Flow 92, 131139.CrossRefGoogle Scholar
Kolmogorov, A.N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13 (1), 8285.CrossRefGoogle Scholar
Kuznetsov, V.R. & Sabelnikov, V.A. 1990 Turbulence and combustion. Hemisphere Publ. Corp.Google Scholar
Leboissetier, A., Okong'o, N. & Bellan, J. 2005 Consistent large-eddy simulation of a temporal mixing layer laden with evaporating drops. Part 2. A posteriori modelling. J. Fluid Mech. 523, 3778.CrossRefGoogle Scholar
Mashayek, F. 1998 a Direct numerical simulations of evaporating droplet dispersion in forced low Mach number turbulence. Intl J. Heat Mass Transfer 41 (17), 26012617.CrossRefGoogle Scholar
Mashayek, F. 1998 b Droplet-turbulence interactions in low-mach-number homogeneous shear two-phase flows. J. Fluid Mech. 367, 163203.CrossRefGoogle Scholar
Miller, R.S. & Bellan, J. 1999 Direct numerical simulation of a confined three-dimensional gas mixing layer with one evaporating hydrocarbon-droplet-laden stream. J. Fluid Mech. 384, 293338.CrossRefGoogle Scholar
Moisy, F. & Jiménez, J. 2004 Geometry and clustering of intense structures in isotropic turbulence. J. Fluid Mech. 513, 111133.CrossRefGoogle Scholar
Monin, S. & Yaglom, A.M. 2013 Statistical Fluid Mechanics, Volume II: Mechanics of Turbulence, vol. 2. Courier Corporation.Google Scholar
Mordant, N., Crawford, A.M. & Bodenschatz, E. 2004 Three-dimensional structure of the lagrangian acceleration in turbulent flows. Phys. Rev. Lett. 93 (21), 214501.CrossRefGoogle ScholarPubMed
Mordant, N., Delour, J., Léveque, E., Arnéodo, A. & Pinton, J.-F. 2002 Long time correlations in lagrangian dynamics: a key to intermittency in turbulence. Phys. Rev. Lett. 89 (25), 254502.CrossRefGoogle ScholarPubMed
Méès, L., Grosjean, N., Marié, J.-L. & Fournier, C. 2020 Statistical lagrangian evaporation rate of droplets released in a homogeneous quasi-isotropic turbulence. Phys. Rev. Fluids 5 (11), 113602.CrossRefGoogle Scholar
Okong'o, N.A. & Bellan, J. 2004 Consistent large-eddy simulation of a temporal mixing layer laden with evaporating drops. Part 1. Direct numerical simulation, formulation and a priori analysis. J. Fluid Mech. 499, 147.CrossRefGoogle Scholar
Okong'o, N., Leboissetier, A. & Bellan, J. 2008 Detailed characteristics of drop-laden mixing layers: large eddy simulation predictions compared to direct numerical simulation. Phys. Fluids 20 (10), 103305.CrossRefGoogle Scholar
Palmore, J.A. Jr. & Desjardins, O. 2018 Technique for forcing high Reynolds number isotropic turbulence in physical space. Phys. Rev. Fluids 3 (3), 034605.CrossRefGoogle Scholar
Payri, R., Viera, J.P., Wang, H. & Malbec, L.-M. 2016 Velocity field analysis of the high density, high pressure diesel spray. Intl J. Multiphase Flow 80, 6978.CrossRefGoogle Scholar
Pei, Y., Som, S., Pomraning, E., Senecal, P.K., Skeen, S.A., Manin, J. & Pickett, L.M. 2015 Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions. Combust. Flame 162 (12), 44424455.CrossRefGoogle Scholar
Pera, C., Réveillon, J., Vervisch, L. & Domingo, P. 2006 Modeling subgrid scale mixture fraction variance in les of evaporating spray. Combust. Flame 146 (4), 635648.CrossRefGoogle Scholar
Pickett, L.M., Genzale, C.L., Bruneaux, G., Malbec, L.-M., Hermant, L., Christiansen, C. & Schramm, J. 2010 Comparison of diesel spray combustion in different high-temperature, high-pressure facilities. SAE Intl J. Engines 3 (2), 156181.CrossRefGoogle Scholar
Pickett, L.M., Manin, J., Genzale, C.L., Siebers, D.L., Musculus, M.P.B. & Idicheria, C.A. 2011 Relationship between diesel fuel spray vapor penetration/dispersion and local fuel mixture fraction. SAE Intl J. Engines 4 (1), 764799.CrossRefGoogle Scholar
Pope, S.B. 1990 Lagrangian microscales in turbulence. Phil. Trans. R. Soc. Lond. A 333 (1631), 309319.Google Scholar
Pope, S.B. & Chen, Y.L. 1990 The velocity-dissipation probability density function model for turbulent flows. Phys. Fluids A 2 (8), 14371449.CrossRefGoogle Scholar
Pozorski, J. & Apte, S.V. 2009 Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion. Intl J. Multiphase Flow 35 (2), 118128.CrossRefGoogle Scholar
Qureshi, N.M., Arrieta, U., Baudet, C., Cartellier, A., Gagne, Y. & Bourgoin, M. 2008 Acceleration statistics of inertial particles in turbulent flow. Eur. Phys. J. B 66 (4), 531536.CrossRefGoogle Scholar
Qureshi, N.M., Bourgoin, M., Baudet, C., Cartellier, A. & Gagne, Y. 2007 Turbulent transport of material particles: an experimental study of finite size effects. Phys. Rev. Lett. 99 (18), 184502.CrossRefGoogle ScholarPubMed
Reveillon, J. & Demoulin, F.X. 2007 Effects of the preferential segregation of droplets on evaporation and turbulent mixing. J. Fluid Mech. 583, 273302.CrossRefGoogle Scholar
Sabel'nikov, V., Chtab, A. & Gorokhovski, M. 2007 The coupled les-subgrid stochastic acceleration model (les-ssam) of a high Reynolds number flows. In Advances in Turbulence XI, pp. 209–211. Springer.CrossRefGoogle Scholar
Sabel'nikov, V., Chtab, A. & Gorokhovski, M. 2011 New sub-grid stochastic acceleration model in les of high-Reynolds-number flows. Eur. Phys. J. B 80 (2), 177187.CrossRefGoogle Scholar
Sabelnikov, V., Barge, A. & Gorokhovski, M. 2019 Stochastic modeling of fluid acceleration on residual scales and dynamics of suspended inertial particles in turbulence. Phys. Rev. Fluids 4 (4), 044301.CrossRefGoogle Scholar
Sabelnikov, V. & Fureby, C. 2013 Extended les-pasr model for simulation of turbulent combustion. Prog. Propul. Phys. 4, 539568.CrossRefGoogle Scholar
Sahu, S., Hardalupas, Y. & Taylor, A.M.K.P. 2016 Droplet–turbulence interaction in a confined polydispersed spray: effect of turbulence on droplet dispersion. J. Fluid Mech. 794, 267309.CrossRefGoogle Scholar
Selle, L. & Ribert, G. 2008 Modeling requirements for large-eddy simulation of turbulent flows under supercritical thermodynamic conditions. In Proceedings of the Summer Program, p. 195.Google Scholar
Senecal, P.K., Mitra, S., Pomraning, E., Xue, Q., Som, S., Banerjee, S., Hu, B., Liu, K., Rajamohan, D. & Deur, J.M. 2014 Modeling fuel spray vapor distribution with large eddy simulation of multiple realizations. In Internal Combustion Engine Division Fall Technical Conference, vol. 46179, p. V002T06A002. American Society of Mechanical Engineers.CrossRefGoogle Scholar
Senoner, J.M., Sanjosé, M., Lederlin, T., Jaegle, F., García, M., Riber, E., Cuenot, B., Gicquel, L., Pitsch, H. & Poinsot, T. 2009 Eulerian and lagrangian large-eddy simulations of an evaporating two-phase flow. C. R. Méc. 337 (6–7), 458468.CrossRefGoogle Scholar
Sommerfeld, M. & Qiu, H.-H. 1998 Experimental studies of spray evaporation in turbulent flow. Intl J. Heat Fluid Flow 19 (1), 1022.CrossRefGoogle Scholar
Stolz, S., Adams, N.A. & Kleiser, L. 2001 An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids 13 (4), 9971015.CrossRefGoogle Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.CrossRefGoogle Scholar
Tsang, C.-W., Kuo, C.-W., Trujillo, M. & Rutland, C. 2019 Evaluation and validation of large-eddy simulation sub-grid spray dispersion models using high-fidelity volume-of-fluid simulation data and engine combustion network experimental data. Intl J. Engine Res. 20 (6), 583605.CrossRefGoogle Scholar
Tsang, C.-W., Trujillo, M.F. & Rutland, C.J. 2014 Large-eddy simulation of shear flows and high-speed vaporizing liquid fuel sprays. Comput. Fluids 105, 262279.CrossRefGoogle Scholar
Verwey, C. & Birouk, M. 2017 Experimental investigation of the effect of droplet size on the vaporization process in ambient turbulence. Combust. Flame 182, 288297.CrossRefGoogle Scholar
Villermaux, E. 2019 Mixing versus stirring. Annu. Rev. Fluid Mech. 51, 245273.CrossRefGoogle Scholar
Villermaux, E., Moutte, A., Amielh, M. & Meunier, P. 2017 Fine structure of the vapor field in evaporating dense sprays. Phys. Rev. Fluids 2 (7), 074501.CrossRefGoogle Scholar
Vulis, L.A. 1961 Thermal Regimes of Combustion. McGraw-Hill.Google Scholar
Wang, Q. & Squires, K.D. 1996 Large eddy simulation of particle-laden turbulent channel flow. Phys. Fluids 8 (5), 12071223.CrossRefGoogle Scholar
Wehrfritz, A., Vuorinen, V., Kaario, O. & Larmi, M. 2013 Large eddy simulation of high-velocity fuel sprays: studying mesh resolution and breakup model effects for spray a. Atomiz. Sprays 23 (5), 419442.CrossRefGoogle Scholar
Weiss, P., Giddey, V., Meyer, D.W. & Jenny, P. 2020 Evaporating droplets in shear turbulence. Phys. Fluids 32 (7), 073305.CrossRefGoogle Scholar
Weiss, P., Meyer, D.W. & Jenny, P. 2018 Evaporating droplets in turbulence studied with statistically stationary homogeneous direct numerical simulation. Phys. Fluids 30 (8), 083304.CrossRefGoogle Scholar
Wu, J.-S., Liu, Y.-J. & Sheen, H.-J. 2001 Effects of ambient turbulence and fuel properties on the evaporation rate of single droplets. Intl J. Heat Mass Transfer 44 (24), 45934603.CrossRefGoogle Scholar
Yeung, P.K., Zhai, X.M. & Sreenivasan, K.R. 2015 Extreme events in computational turbulence. Proc. Natl Acad. Sci. 112 (41), 1263312638.CrossRefGoogle ScholarPubMed
Yoshizawa, A. & Horiuti, K. 1985 A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows. J. Phys. Soc. Japan 54 (8), 28342839.CrossRefGoogle Scholar
Zamansky, R., Vinkovic, I. & Gorokhovski, M. 2013 Acceleration in turbulent channel flow: universalities in statistics, subgrid stochastic models and an application. J. Fluid Mech. 721, 627668.CrossRefGoogle Scholar
Zhang, Z., Legendre, D. & Zamansky, R. 2019 Model for the dynamics of micro-bubbles in high-Reynolds-number flows. J. Fluid Mech. 879, 554578.CrossRefGoogle Scholar