Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T22:03:32.968Z Has data issue: false hasContentIssue false

Steady motion of Bingham liquid plugs in two-dimensional channels

Published online by Cambridge University Press:  12 December 2011

Parsa Zamankhan*
Affiliation:
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
Brian T. Helenbrook
Affiliation:
Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY 13699, USA
Shuichi Takayama
Affiliation:
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
James B. Grotberg
Affiliation:
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
*
Email address for correspondence: [email protected]

Abstract

We study numerically the steady creeping motion of Bingham liquid plugs in two-dimensional channels as a model of mucus behaviour during airway reopening in pulmonary airways. In addition to flow analysis related to propagation of the plug, the stress distribution on the wall is studied for better understanding of potential airway epithelial cell injury mechanisms. The yield stress behaviour of the fluid was implemented through a regularized constitutive equation. The capillary number, , and the Bingham number, , which is the ratio of the yield stress to a characteristic viscous stress, varied over the ranges 0.025–0.1 and 0–1.5, respectively. For the range of parameters studied, it was found that, while the yield stress reduces the magnitude of the shearing along the wall, it can magnify the amplitude of the wall shear stress gradient significantly, and also it can elevate the magnitude of the wall shear stress and wall pressure gradient up to 30 % and 15 %, respectively. Therefore, the motion of mucus plugs can be more damaging to the airway epithelial cells due to the yield stress properties of mucus. The yield stress also modifies the profile of the plug where the amplitude of the capillary waves at the leading meniscus decreases with increase in . Other findings are that: the thickness of the static film increases with increasing ; the driving pressure difference increases linearly with ; and increasing extends any wall stagnation point beneath the leading meniscus to an unyielded line segment beneath the leading meniscus. With an increase in , the unyielded areas appear and grow in the adjacent wall film as well as the core region of the plug between the two menisci. The plug length, , mostly modifies the topology of the yield surfaces. It was found that the unyielded area in the core region between the two menisci grows as the plug length decreases. The very short Bingham plug behaves like a solid lamella. In all computed liquid plugs moving steadily, the von Mises stress attains its maximum value near the interface of the leading meniscus in the transition region. For Bingham plugs moving very slowly, , the driving pressure is non-zero.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Allouche, M., Frigaard, I. A. & Sona, G. 2000 Static wall layers in the displacement of two visco-plastic fluids in a plane channel. J. Fluid Mech. 424, 243277.CrossRefGoogle Scholar
2. ANSYS FIDAP, 2003 User’s Manual. ANSYS Inc., Version 8.7.Google Scholar
3. Beaulne, M. & Mitsoulis, E. 1997 Creeping motion of a sphere in tubes filled with Herschel–Bulkley fluids. J. Non-Newtonian Fluid Mech. 72 (1), 5571.CrossRefGoogle Scholar
4. Bian, S., Tai, C. F., Halpern, D., Zheng, Y. & Grotberg, J. B. 2010 Experimental study of flow fields in an airway closure model. J. Fluid Mech. 647, 391402.CrossRefGoogle Scholar
5. Bilek, A. M., Dee, K. C. & Gaver, D. P. 2003 Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. J. Appl. Physiol. 94 (2), 770783.CrossRefGoogle Scholar
6. Burger, E. J. & Macklem, P. 1968 Airway closure – demonstration by breathing 100 percent at low lung volumes and by washout. J. Appl. Physiol. 25 (2), 139.CrossRefGoogle Scholar
7. Burgos, G. R., Alexandrou, A. N. & Entov, V. 1999 On the determination of yield surfaces in Herschel–Bulkley fluids. J. Rheol. 43 (3), 463483.CrossRefGoogle Scholar
8. Bush, A., Payne, D., Pike, S., Jenkins, G., Henke, M. O. & Rubin, B. K. 2006 Mucus properties in children with primary ciliary dyskinesia – comparison with cystic fibrosis. Chest 129 (1), 118123.CrossRefGoogle ScholarPubMed
9. Dimakopoulos, Y. & Tsamopoulos, J. 2003 Transient displacement of a viscoplastic material by air in straight and suddenly constricted tubes. J. Non-Newtonian Fluid Mech. 112 (1), 4375.CrossRefGoogle Scholar
10. Dimakopoulos, Y. & Tsamopoulos, J. 2007 Transient displacement of Newtonian and viscoplastic liquids by air in complex tubes. J. Non-Newtonian Fluid Mech. 142 (1–3), 162182.CrossRefGoogle Scholar
11. Dubash, N. & Frigaard, I. 2004 Conditions for static bubbles in viscoplastic fluids. Phys. Fluids 16 (12), 43194330.CrossRefGoogle Scholar
12. Espinosa, F. F. & Kamm, R. D. 1999 Bolus dispersal through the lungs in surfactant replacement therapy. J. Appl. Physiol. 86 (1), 391410.CrossRefGoogle ScholarPubMed
13. Everett, D. H. & Haynes, J. M. 1972 Model studies of capillary condensation. 1. Cylindrical pore model with zero contact angle. J. Colloid Interface Sci. 38 (1), 125.CrossRefGoogle Scholar
14. Feng, J. Q. 2009 A long gas bubble moving in a tube with flowing liquid. Intl J. Multiphase Flow 35 (8), 738746.CrossRefGoogle Scholar
15. Fujioka, H. & Grotberg, J. B. 2004 Steady propagation of a liquid plug in a two-dimensional channel. Trans. ASME: J. Biomech. Engng 126 (5), 567577.Google Scholar
16. Fujioka, H. & Grotberg, J. B. 2005 The steady propagation of a surfactant-laden liquid plug in a two-dimensional channel. Phys. Fluids 17 (8), 17.CrossRefGoogle Scholar
17. Fujioka, H., Takayama, S. & Grotberg, J. B. 2008 Unsteady propagation of a liquid plug in a liquid-lined straight tube. Phys. Fluids 20 (6), 13.CrossRefGoogle Scholar
18. Fung, Y. C. 1984 Biomechanics. Springer.Google Scholar
19. Giavedoni, M. D. & Saita, F. A. 1999 The rear meniscus of a long bubble steadily displacing a Newtonian liquid in a capillary tube. Phys. Fluids 11 (4), 786794.CrossRefGoogle Scholar
20. Glowinski, R. 1984 Numerical Methods for Nonlinear Variational Problems. Springer.CrossRefGoogle Scholar
21. Glowinski, R., Lions, J. L. & Tremolieres, R. 1981 Numerical Analysis of Variational Inequalities. North-Holland.Google Scholar
22. Halpern, D. & Grotberg, J. B. 1992 Fluid-elastic instabilities of liquid-lined flexible tubes. J. Fluid Mech. 244, 615632.CrossRefGoogle Scholar
23. Halpern, D., Jensen, O. E. & Grotberg, J. B. 1998 A theoretical study of surfactant and liquid delivery into the lung. J. Appl. Physiol. 85 (1), 333352.CrossRefGoogle ScholarPubMed
24. Heil, M. 1999a Minimal liquid bridges in non-axisymmetrically buckled elastic tubes. J. Fluid Mech. 380, 309337.CrossRefGoogle Scholar
25. Heil, M. 1999b Airway closure: occluding liquid bridges in strongly buckled elastic tubes. Trans. ASME: J. Biomech. Engng 121 (5), 487493.Google ScholarPubMed
26. Howell, P. D., Waters, S. L. & Grotberg, J. B. 2000 The propagation of a liquid bolus along a liquid-lined flexible tube. J. Fluid Mech. 406, 309335.CrossRefGoogle Scholar
27. Huh, D., Fujioka, H., Tung, Y. C., Futai, N., Paine, R., Grotberg, J. B. & Takayama, S. 2007 Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc. Natl Acad. Sci. USA 104 (48), 18 88618 891.CrossRefGoogle ScholarPubMed
28. Kamm, R. D. & Schroter, R. C. 1989 Is airway-closure caused by a liquid-film instability? Respir. Physiol. 75 (2), 141156.CrossRefGoogle ScholarPubMed
29. Kay, S. S., Bilek, A. M., Dee, K. C. & Gaver, D. P. 2004 Pressure gradient, not exposure duration, determines the extent of epithelial cell damage in a model of pulmonary airway reopening. J. Appl. Physiol. 97 (1), 269276.CrossRefGoogle ScholarPubMed
30. Kistler, S. F. & Scriven, L. E. 1984 Coating flow theory by finite-element and asymptotic analysis of the Navier–Stokes system. Intl J. Numer. Meth. Fluids 4 (3), 207229.CrossRefGoogle Scholar
31. Lavrenteva, O. M., Holenberg, Y. & Nir, A. 2009 Motion of viscous drops in tubes filled with yield stress fluid. Chem. Engng Sci. 64 (22), 47724786.CrossRefGoogle Scholar
32. Liu, B. T., Muller, S. J. & Denn, M. M. 2002 Convergence of a regularization method for creeping flow of a Bingham material about a rigid sphere. J. Non-Newtonian Fluid Mech. 102 (2), 179191.CrossRefGoogle Scholar
33. Long, W., Thompson, T., Sundell, H., Schumacher, R., Volberg, F. & Guthrie, R. 1991 Effects of 2 rescue doses of a synthetic surfactant on mortality-rate and survival without bronchopulmonary dysplasia in 700-gram to 1350-gram infants with respiratory-distress syndrome. J. Pediatrics 118 (4), 595605.CrossRefGoogle Scholar
34. Moyers-Gonzalez, M. A. & Frigaard, I. A. 2004 Numerical solution of duct flows of multiple visco-plastic fluids. J. Non-Newtonian Fluid Mech. 122 (1–3), 227241.CrossRefGoogle Scholar
35. Oldroyd, J. G. 1947a A rational formulation of the equations of plastic flow for a Bingham solid. Proc. Camb. Phil. Soc. 43 (1), 100105.CrossRefGoogle Scholar
36. Oldroyd, J. G. 1947b Two-dimensional plastic flow of a Bingham solid – A. Plastic boundary-layer theory for slow motion. Proc. Camb. Phil. Soc. 43 (3), 383395.CrossRefGoogle Scholar
37. Papanastasiou, T. C. 1987 Flows of materials with yield. J. Rheol. 31 (5), 385404.CrossRefGoogle Scholar
38. Potapov, A., Spivak, R., Lavrenteva, O. M. & Nir, A. 2006 Motion and deformation of drops in Bingham fluid. Ind. Engng Chem. Res. 45 (21), 69856995.CrossRefGoogle Scholar
39. Reinelt, D. A. & Saffman, P. G. 1985 The penetration of a finger into a viscous-fluid in a channel and tube. SIAM J. Sci. Stat. Comput. 6 (3), 542561.CrossRefGoogle Scholar
40. Shao, N., Gavriilidis, A. & Angeli, P. 2009 Flow regimes for adiabatic gas–liquid flow in microchannels. Chem. Engng Sci. 64 (11), 27492761.CrossRefGoogle Scholar
41. Singh, J. P. & Denn, M. M. 2008 Interacting two-dimensional bubbles and droplets in a yield-stress fluid. Phys. Fluids 20 (4), 11.CrossRefGoogle Scholar
42. de Sousa, D. A., Soares, E. J., de Queiroz, R. S. & Thompson, R. L. 2007 Numerical investigation on gas-displacement of a shear-thinning liquid and a visco-plastic material in capillary tubes. J. Non-Newtonian Fluid Mech. 144 (2–3), 149159.CrossRefGoogle Scholar
43. Tai, C. F., Bian, S., Halpern, D., Zheng, Y., Filoche, M. & Grotberg, J. B. 2011 Numerical study of flow fields in an airway closure model. J. Fluid Mech. 677, 483502.CrossRefGoogle Scholar
44. Tavana, H., Zamankhan, P., Christensen, P. J., Grotberg, J. B. & Takayama, S. 2011 Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model. Biomed. Microdevices 13, 731742.CrossRefGoogle Scholar
45. Thompson, R. L., Soares, E. J. & Bacchi, R. D. A. 2010 Further remarks on numerical investigation on gas displacement of a shear-thinning liquid and a visco-plastic material in capillary tubes. J. Non-Newtonian Fluid Mech. 165 (7–8), 448452.CrossRefGoogle Scholar
46. Tsamopoulos, J., Dimakopoulos, Y., Chatzidai, N., Karapetsas, G. & Pavlidis, M. 2008 Steady bubble rise and deformation in Newtonian and viscoplastic fluids and conditions for bubble entrapment. J. Fluid Mech. 601, 123164.CrossRefGoogle Scholar
47. Vola, D., Babik, F. & Latche, J. C. 2004 On a numerical strategy to compute gravity currents of non-Newtonian fluids. J. Comput. Phys. 201 (2), 397420.CrossRefGoogle Scholar
48. Vola, D., Boscardin, L. & Latche, J. C. 2003 Laminar unsteady flows of Bingham fluids: a numerical strategy and some benchmark results. J. Comput. Phys. 187 (2), 441456.CrossRefGoogle Scholar
49. Waters, S. L. & Grotberg, J. B. 2002 The propagation of a surfactant laden liquid plug in a capillary tube. Phys. Fluids 14 (2), 471480.CrossRefGoogle Scholar
50. Weibel, E. R. 1963 Morphometry of the Human Lung. Academic Press.CrossRefGoogle Scholar
51. Zhang, J. Y. 2011 An augmented Lagrangian approach to Bingham fluid flows in a lid-driven square cavity with piecewise linear equal-order finite elements. Comput. Meth. Appl. Mech. Engng 199 (45–48), 30513057.CrossRefGoogle Scholar
52. Zheng, Y., Fujioka, H., Bian, S., Torisawa, Y., Huh, D., Takayama, S. & Grotberg, J. B. 2009 Liquid plug propagation in flexible microchannels: a small airway model. Phys. Fluids 21 (7), 12.CrossRefGoogle ScholarPubMed
53. Zheng, Y., Fujioka, H. & Grotberg, J. B. 2007 Effects of gravity, inertia, and surfactant on steady plug propagation in a two-dimensional channel. Phys. Fluids 19 (8), 16.CrossRefGoogle Scholar