Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T22:14:10.907Z Has data issue: false hasContentIssue false

Statistical properties of supersonic turbulence in the Lagrangian and Eulerian frameworks

Published online by Cambridge University Press:  19 December 2011

Lukas Konstandin*
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg, Germany
Christoph Federrath
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg, Germany Ecole Normale Supérieure de Lyon, Centre de Recherche Astrophysique, 46 Allée d’Italie, F-69364 Lyon, France Centre for Stellar and Planetary Astrophysics, School of Mathematical Sciences, Monash University, Clayton VIC 3168, Australia
Ralf S. Klessen
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg, Germany
Wolfram Schmidt
Affiliation:
Institut für Astrophysik der Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
*
Email address for correspondence: [email protected]

Abstract

We present a systematic study of the influence of different forcing types on the statistical properties of supersonic, isothermal turbulence in both the Lagrangian and Eulerian frameworks. We analyse a series of high-resolution, hydrodynamical grid simulations with Lagrangian tracer particles and examine the effects of solenoidal (divergence-free) and compressive (curl-free) forcing on structure functions, their scaling exponents, and the probability density functions of the gas density and velocity increments. Compressively driven simulations show significantly larger density contrast, more intermittent behaviour, and larger fractal dimension of the most dissipative structures at the same root mean square Mach number. We show that the absolute values of Lagrangian and Eulerian structure functions of all orders in the integral range are only a function of the root mean square Mach number, but independent of the forcing. With the assumption of a Gaussian distribution for the probability density function of the velocity increments for large scales, we derive a model that describes this behaviour.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ballesteros-Paredes, J., Klessen, R. S. & Vázquez-Semadeni, E. 2003 Dynamic cores in hydrostatic disguise. Astrophys. J. 592, 188202.CrossRefGoogle Scholar
2.Beck, C. 2004 Superstatistics in hydrodynamic turbulence. Physica D 193, 195207.CrossRefGoogle Scholar
3.Beetz, A., Gollwitzer, C., Richter, R. & Rehberg, I. 2008 Response of a ferrofluid to travelling-stripe forcing. J. Phys.: Condens. Matter 20 (20), 204109.Google ScholarPubMed
4.Benzi, R., Biferale, L., Fisher, R., Lamb, D. Q. & Toschi, F. 2010 Inertial range Eulerian and Lagrangian statistics from numerical simulations of isotropic turbulence. J. Fluid Mech. 653, 221244.CrossRefGoogle Scholar
5.Benzi, R., Biferale, L., Fisher, R. T., Kadanoff, L. P., Lamb, D. Q. & Toschi, F. 2008 Intermittency and universality in fully developed inviscid and weakly compressible turbulent flows. Phys. Rev. Lett. 100 (23), 234503.CrossRefGoogle ScholarPubMed
6.Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F. & Succi, S. 1993 Extended self-similarity in turbulent flows. Phys. Rev. E 48, 29.CrossRefGoogle ScholarPubMed
7.Boldyrev, S., Nordlund, Å & Padoan, P. 2002 Supersonic turbulence and structure of interstellar molecular clouds. Phys. Rev. Lett. 89 (3), 031102.CrossRefGoogle ScholarPubMed
8.Colella, P. & Woodward, P. R. 1984 The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174201.CrossRefGoogle Scholar
9.Dubey, A., Fisher, R., Graziani, C., Jordan, IV, G. C., Lamb, D. Q., Reid, L. B., Rich, P., Sheeler, D., Townsley, D. & Weide, K. 2008 Challenges of extreme computing using the FLASH code. In Numerical Modelling of Space Plasma Flows (ed. Pogorelov, N. V., Audit, E. & Zank, G. P. ). Astronomical Society of the Pacific Conference Series , vol. 385. p. 145Astronomical Society of the Pacific.Google Scholar
10.Dubrulle, B. 1994 Intermittency in fully developed turbulence: log-Poisson statistics and generalized scale covariance. Phys. Rev. Lett. 73, 959962.CrossRefGoogle ScholarPubMed
11.Eswaran, V. & Pope, S. B. 1988 An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 16, 257278.CrossRefGoogle Scholar
12.Federrath, C., Klessen, R. S. & Schmidt, W. 2008 The density probability distribution in compressible isothermal turbulence: solenoidal versus compressive forcing. Astrophys. J. Lett. 688, L79L82.CrossRefGoogle Scholar
13.Federrath, C., Klessen, R. S. & Schmidt, W. 2009 The fractal density structure in supersonic isothermal turbulence: solenoidal versus compressive energy injection. Astrophys. J. 692, 364374.CrossRefGoogle Scholar
14.Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W. & Mac Low, M.-M. 2010 Comparing the statistics of interstellar turbulence in simulations and observations: solenoidal versus compressive turbulence forcing. Astron. Astrophys. 512, A81.CrossRefGoogle Scholar
15.Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
16.Fryxell, B., Olson, K., Ricker, P., Timmes, F. X., Zingale, M., Lamb, D. Q., MacNeice, P., Rosner, R., Truran, J. W. & Tufo, H. 2000 FLASH: an adaptive mesh hydrodynamics code for modelling astrophysical thermonuclear flashes. Astron. Astrophys. Suppl. 131, 273334.Google Scholar
17.Galtier, S. & Banerjee, S. 2011 Exact relation for correlation functions in compressible isothermal turbulence. Phys. Rev. Lett. 107 (13), 134501.CrossRefGoogle ScholarPubMed
18.Gotoh, T., Fukayama, D. & Nakano, T. 2002 Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys. Fluids 14, 10651081.CrossRefGoogle Scholar
19.Hennebelle, P. & Chabrier, G. 2008 Analytical theory for the initial mass function: CO clumps and prestellar cores. Astrophys. J. 684, 395410.CrossRefGoogle Scholar
20.Hennebelle, P. & Chabrier, G. 2009 Analytical theory for the initial mass function. Part II. Properties of the flow. Astrophys. J. 702, 14281442.CrossRefGoogle Scholar
21.Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165180.CrossRefGoogle Scholar
22.Klessen, R. S. 2000 One-point probability distribution functions of supersonic turbulent flows in self-gravitating media. Astrophys. J. 535, 869886.CrossRefGoogle Scholar
23.Klessen, R. S., Ballesteros-Paredes, J., Vázquez-Semadeni, E. & Durán-Rojas, C. 2005 Quiescent and coherent cores from gravoturbulent fragmentation. Astrophys. J. 620, 786794.CrossRefGoogle Scholar
24.Kolmogorov, A. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Akad. Nauk SSSR Dokl. 30, 301305.Google Scholar
25.Kowal, G. & Lazarian, A. 2007 Scaling relations of compressible MHD turbulence. Astrophys. J. Lett. 666, L69L72.CrossRefGoogle Scholar
26.Kritsuk, A. G., Norman, M. L., Padoan, P. & Wagner, R. 2007 The statistics of supersonic isothermal turbulence. Astrophys. J. 665, 416431.CrossRefGoogle Scholar
27.Lemaster, M. N. & Stone, J. M. 2008 Density probability distribution functions in supersonic hydrodynamic and MHD turbulence. Astrophys. J. Lett. 682, L97L100.CrossRefGoogle Scholar
28.Lesieur, M. 1993 Turbulence in fluids. In Fluid Mechanics and its Applications 1: Fluid Mechanics and its Applications, second edn. Kluwer.Google Scholar
29.Li, Y., Klessen, R. S. & Mac Low, M.-M. 2003 The formation of stellar clusters in turbulent molecular clouds: effects of the equation of state. Astrophys. J. 592, 975985.CrossRefGoogle Scholar
30.Mac Low, M.-M. & Klessen, R. S. 2004 Control of star formation by supersonic turbulence. Rev. Mod. Phys. 76, 125194.CrossRefGoogle Scholar
31.McKee, C. F. & Ostriker, E. C. 2007 Theory of star formation. Annu. Rev. Astron. Astrophys. 45, 565687.CrossRefGoogle Scholar
32.Mordant, N., Delour, J., Léveque, E., Arnéodo, A. & Pinton, J.-F. 2002 Long time correlations in Lagrangian dynamics: a key to intermittency in turbulence. Phys. Rev. Lett. 89 (25), 254502.CrossRefGoogle ScholarPubMed
33.Padoan, P. & Nordlund, Å 2002 The stellar initial mass function from turbulent fragmentation. Astrophys. J. 576, 870879.CrossRefGoogle Scholar
34.Padoan, P., Nordlund, A. & Jones, B. J. T. 1997 The universality of the stellar initial mass function. Mon. Not. R. Astron. Soc. 288, 145152.CrossRefGoogle Scholar
35.Passot, T. & Vázquez-Semadeni, E. 1998 Density probability distribution in one-dimensional polytropic gas dynamics. Phys. Rev. E 58, 45014510.CrossRefGoogle Scholar
36.Price, D. J. & Federrath, C. 2010 A comparison between grid and particle methods on the statistics of driven, supersonic, isothermal turbulence. Mon. Not. R. Astron. Soc. 406, 16591674.Google Scholar
37.Price, D. J., Federrath, C. & Brunt, C. M. 2011 The density variance-Mach number relation in supersonic, isothermal turbulence. Astrophys. J. Lett. 727, L21.CrossRefGoogle Scholar
38.Scalo, J. & Elmegreen, B. G. 2004 Interstellar turbulence. Part II. Implications and effects. Annu. Rev. Astron. Astrophys. 42, 275316.CrossRefGoogle Scholar
39.Schmidt, W., Federrath, C., Hupp, M., Kern, S. & Niemeyer, J. C. 2009 Numerical simulations of compressively driven interstellar turbulence. Part I. Isothermal gas. Astron. Astrophys. 494, 127145.CrossRefGoogle Scholar
40.Schmidt, W., Federrath, C. & Klessen, R. 2008 Is the scaling of supersonic turbulence universal? Phys. Rev. Lett. 101 (19), 194505.CrossRefGoogle ScholarPubMed
41.She, Z.-S. & Leveque, E. 1994 Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336339.CrossRefGoogle ScholarPubMed
42.Stutzki, J., Bensch, F., Heithausen, A., Ossenkopf, V. & Zielinsky, M. 1998 On the fractal structure of molecular clouds. Astron. Astrophys. 336, 697720.Google Scholar
43.Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.CrossRefGoogle Scholar