Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T17:55:30.142Z Has data issue: false hasContentIssue false

Starting jet formation through eversion of elastic sheets

Published online by Cambridge University Press:  04 August 2021

Cheolgyun Jung
Affiliation:
Department of Mechanical Engineering, KAIST, Daejeon 34141, Republic of Korea
Minho Song
Affiliation:
Department of Mechanical Engineering, KAIST, Daejeon 34141, Republic of Korea
Daegyoum Kim*
Affiliation:
Department of Mechanical Engineering, KAIST, Daejeon 34141, Republic of Korea
*
Email address for correspondence: [email protected]

Abstract

Motivated by biological systems, such as human hearts and the propulsors of aquatic creatures, the interaction between deformable structures and fluid jets has drawn considerable attention to understand the mechanism of effective fluid transport through such jets. In this study, the formation of a starting jet through a novel eversion process is investigated experimentally using a simple vortex generator model with everted sheets. The ends of two everted sheets are clamped at either side of a rectangular flow channel, with the other free ends in contact with each other in the middle of the channel. Geometric and kinematic parameters, such as the length and bending rigidity of the everting sheets and the speed of the piston, are varied to examine their effects on the deformation of the sheets and the formation of the jet. By introducing a dimensionless bending rigidity, the behaviour of the sheets during the eversion process can be correlated with jet characteristics such as the velocity profile and hydrodynamic impulse. The interaction between the starting jet and the everting sheets enables a notably faster jet with an improved hydrodynamic impulse to be developed within a shorter stroke time.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Connell, B.S.H. & Yue, D.K.P. 2007 Flapping dynamics of a flag in a uniform stream. J. Fluid Mech. 581, 3367.CrossRefGoogle Scholar
Dabiri, J.O. 2009 Optimal vortex formation as a unifying principle in biological propulsion. Annu. Rev. Fluid Mech. 41, 1733.CrossRefGoogle Scholar
Dabiri, J.O., Colin, S.P., Costello, J.H. & Gharib, M. 2005 a Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses. J. Expl Biol. 208, 12571265.CrossRefGoogle ScholarPubMed
Dabiri, J.O. & Gharib, M. 2005 b Starting flow through nozzles with temporally variable exit diameter. J. Fluid Mech. 538, 111136.CrossRefGoogle Scholar
Das, P., Govardhan, R.N. & Arakeri, J.H. 2013 Effect of hinged leaflets on vortex pair generation. J. Fluid Mech. 730, 626658.CrossRefGoogle Scholar
Das, P., Govardhan, R.N. & Arakeri, J.H. 2018 Unsteady two-dimensional jet with flexible flaps at the channel exit. J. Fluid Mech. 845, 462498.CrossRefGoogle Scholar
DeVoria, A.C., Carr, Z.R. & Ringuette, M.J. 2014 On calculating forces from the flow field with application to experimental volume data. J. Fluid Mech. 749, 297319.CrossRefGoogle Scholar
Domenichini, F., Pedrizzetti, G. & Baccani, B. 2005 Three-dimensional filling flow into a model left ventricle. J. Fluid Mech. 539, 179198.CrossRefGoogle Scholar
Gent, A.N. & Rivlin, R.S. 1952 Experiments on the mechanics of rubber I: eversion of a tube. Proc. Phys. Soc. Lond. B 65, 118121.CrossRefGoogle Scholar
Gharib, M., Rambod, E., Kheradvar, A., Sahn, D.J. & Dabiri, J.O. 2006 Optimal vortex formation as an index of cardiac health. Proc. Natl Acad. Sci. USA 103, 63056308.CrossRefGoogle ScholarPubMed
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.CrossRefGoogle Scholar
Haughton, D.M. & Orr, A. 1997 On the eversion of compressible elastic cylinders. Intl J. Solids Struct. 34, 18931914.CrossRefGoogle Scholar
Hawkes, E.W., Blumenschein, L.H., Greer, J.D. & Okamura, A.M. 2017 A soft robot that navigates its environment through growth. Sci. Robot. 2, eaan3028.CrossRefGoogle ScholarPubMed
Holstein, T. & Tardent, P. 1984 An ultrahigh-speed analysis of exocytosis: nematocyst discharge. Science 223, 830833.CrossRefGoogle ScholarPubMed
Kim, D., Cossé, J., Cerdeira, C.H. & Gharib, M. 2013 a Flapping dynamics of an inverted flag. J. Fluid Mech. 736, R1.CrossRefGoogle Scholar
Kim, D., Hussain, F. & Gharib, M. 2013 b Vortex dynamics of clapping plates. J. Fluid Mech. 714, 523.CrossRefGoogle Scholar
Krueger, P.S. & Gharib, M. 2003 The significance of vortex ring formation to the impulse and thrust of a starting jet. Phys. Fluids 15, 12711281.CrossRefGoogle Scholar
Krueger, P.S., Moslemi, A.A., Nichols, J.T., Bartol, I.K. & Stewart, W.J. 2008 Vortex rings in bio-inspired and biological jet propulsion. Adv. Sci. Technol. 58, 237246.CrossRefGoogle Scholar
Ledesma-Alonso, R., Guzmán, J.E.V. & Zenit, R. 2014 Experimental study of a model valve with flexible leaflets in a pulsatile flow. J. Fluid Mech. 739, 338362.CrossRefGoogle Scholar
Lee, J., Park, Y.-J., Cho, K.-J., Kim, D. & Kim, H.-Y. 2017 Hydrodynamic advantages of a low aspect-ratio flapping foil. J. Fluids Struct. 71, 7077.CrossRefGoogle Scholar
Liang, X., Tao, F. & Cai, S. 2016 Creasing of an everted elastomer tube. Soft Matt. 12, 77267730.CrossRefGoogle ScholarPubMed
Linden, P.F. & Turner, J.S. 2004 ‘Optimal’ vortex rings and aquatic propulsion mechanisms. Proc. R. Soc. Lond. B 271, 647653.CrossRefGoogle ScholarPubMed
Lucas, K.N., Johnson, N., Beaulieu, W.T., Cathcart, E., Tirrell, G., Colin, S.P., Gemmell, B.J., Dabiri, J.O. & Costello, J.H. 2014 Bending rules for animal propulsion. Nat. Commun. 5, 3293.CrossRefGoogle ScholarPubMed
McDermott, J.J. & Roe, P. 1985 Food, feeding behavior and feeding ecology of nemerteans. Am. Zool. 25, 113125.CrossRefGoogle Scholar
Mohseni, K., Ran, H. & Colonius, T. 2001 Numerical experiments on vortex ring formation. J. Fluid Mech. 430, 267282.CrossRefGoogle Scholar
Noca, F., Shiels, D. & Jeon, D. 1997 Measuring instantaneous fluid dynamic forces on bodies, using only velocity fields and their derivatives. J. Fluids Struct. 11, 345350.CrossRefGoogle Scholar
Nüchter, T., Benoit, M., Engel, U., Özbek, S. & Holstein, T.W. 2006 Nanosecond-scale kinetics of nematocyst discharge. Curr. Biol. 16, R316R318.CrossRefGoogle ScholarPubMed
Palanivelu, R. & Preuss, D. 2000 Pollen tube targeting and axon guidance: parallels in tip growth mechanisms. Trends Cell Biol. 10, 517524.CrossRefGoogle ScholarPubMed
Pedrizzetti, G. & Domenichini, F. 2005 Nature optimizes the swirling flow in the human left ventricle. Phys. Rev. Lett. 95, 108101.CrossRefGoogle ScholarPubMed
Rosenfeld, M., Rambod, E. & Gharib, M. 1998 Circulation and formation number of laminar vortex rings. J. Fluid Mech. 376, 297318.CrossRefGoogle Scholar
Saffman, P.G. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
Shukla, S., Govardhan, R.N. & Arakeri, J.H. 2013 Dynamics of a flexible splitter plate in the wake of a circular cylinder. J. Fluids Struct. 41, 127134.CrossRefGoogle Scholar
Sigaeva, T., Mangan, R., Vergori, L., Destrade, M. & Sudak, L. 2018 Wrinkles and creases in the bending, unbending and eversion of soft sectors. Proc. R. Soc. Lond. A 474, 20170827.Google ScholarPubMed
Sotiropoulos, F., Le, T.B. & Gilmanov, A. 2016 Fluid mechanics of heart valves and their replacements. Annu. Rev. Fluid Mech. 48, 259283.CrossRefGoogle Scholar
Willert, C.E. & Gharib, M. 1991 Digital particle image velocimetry. Exp. Fluids 10, 181193.CrossRefGoogle Scholar

Jung et al. supplementary movie

Movie for Figure 3

Download Jung et al. supplementary movie(Video)
Video 5.7 MB