Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-04T19:33:29.911Z Has data issue: false hasContentIssue false

Stability of the tank treading modes of erythrocytes and its dependence on cytoskeleton reference states

Published online by Cambridge University Press:  20 April 2015

Zhangli Peng
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
Sara Salehyar
Affiliation:
Department of Structural Engineering, University of California San Diego, La Jolla, CA 92093, USA
Qiang Zhu*
Affiliation:
Department of Structural Engineering, University of California San Diego, La Jolla, CA 92093, USA
*
Email address for correspondence: [email protected]

Abstract

We studied the tank treading motion of an erythrocyte (red blood cell, or RBC) in linear shear flows by using a boundary-element fluid-dynamics model coupled with a multiscale structural model of the cell. The purpose was to investigate the correlation between the reference (stress-free) state of the cytoskeleton and the cell dynamics in shear flows with relatively high capillary numbers. We discovered that there exist two distinctive modes of tank treading, mode 1 and mode 2. In mode 1 the membrane elements originating from the dimple areas keep close to the central plane, whereas in mode 2 these elements remain near the farthermost locations from the central plane. Mode 1 is also characterized by significantly higher breathing and swinging oscillations. During tank treading one mode may become unstable and switch to the other. Their stability depends on the viscosity ratio and the capillary number. At a fixed viscosity ratio, when the capillary number is increased the cell experiences sequentially a region dominated by mode 2, a mode 1/mode 2 bistable region and a region dominated by mode 1. More profoundly, these regions are highly sensitive to the reference state of the cytoskeleton. For example, compared with a cell with a biconcave reference state, a cell with a spheroidal reference state features a much smaller region dominated by mode 2. This finding may guide experiments to identify the actual reference state of these cells.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abkarian, M., Faivre, M. & Viallat, A. 2007 Swinging of red blood cells under shear flow. Phys. Rev. Lett. 98, 188302.Google Scholar
Barthès-Biesel, D. 1980 Motion of a spherical microcapsule freely suspended in a linear shear flow. J. Fluid Mech. 100, 831853.Google Scholar
Bitbol, M. 1986 Red blood cell orientation in orbit $c=0$ . Biophys. J. 49, 10551068.CrossRefGoogle ScholarPubMed
Chien, S. 1987 Red cell deformability and its relevance to blood flow. Annu. Rev. Physiol. 49, 177.CrossRefGoogle ScholarPubMed
Cordasco, D., Yazdani, A. & Bagchi, P. 2014 Comparison of erythrocyte dynamics in shear flow under different stress-free configurations. Phys. Fluids 26, 041902.CrossRefGoogle Scholar
Discher, D. E., Boal, D. H. & Boey, S. K. 1998 Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophys. J. 75, 15841597.Google Scholar
Discher, D. E., Mohandas, N. & Evans, E. A. 1994 Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science 266, 10321035.Google Scholar
Dodson, W. R. & Dimitrakopoulos, P. 2010 Tank-treading of erythrocytes in strong shear flows via a nonstiff cytoskeleton-based continuum computational modeling. Biophys. J. 99, 29062916.CrossRefGoogle Scholar
Dupire, J., Socol, M. & Viallat, A. 2012 Full dynamics of a red blood cell in shear flow. Proc. Natl Acad. Sci. USA 109, 2080820813.Google Scholar
Dupont, C., Salsac, A. & Barthès-Biesel, D. 2013 Off-plane motion of a prolate capsule in shear flow. J. Fluid Mech. 721, 180198.Google Scholar
Eggleton, C. D. & Popel, A. S. 1998 Large deformation of red blood cell ghosts in a simple shear flow. Phys. Fluids 10, 18341845.Google Scholar
Evans, E. A. & Fung, Y. C. 1972 Improved measurements of the erythrocyte geometry. Microvasc. Res. 4, 335347.Google Scholar
Evans, E. A. & Skalak, P. 1980 Mechanics and Thermodynamics of Biomembranes. CRC Press.Google Scholar
Evans, E. A., Waugh, R. E. & Melnik, L. 1976 Elastic area compressibility modulus of red cell membrane. Biophys. J. 16, 585595.CrossRefGoogle ScholarPubMed
Fedosov, D. A., Caswell, B. & Karniadakis, G. E. 2011 Wall shear stress-based model for adhesive dynamics of red blood cells in malaria. Biophys. J. 100, 20842093.Google Scholar
Fischer, T. M. 2004 Shape memory of human red blood cells. Biophys. J. 86, 33043313.Google Scholar
Fischer, T. M. & Korzeniewski, R. 2013 Threshold shear stress for the transition between tumbling and tank-treading of red blood cells in shear flow dependence on the viscosity of the suspending medium. J. Fluid Mech. 736, 351365.Google Scholar
Fischer, T. M., Stohr-Liesen, M. & Schmid-Schonbein, H. 1978 The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow. Science 202, 894896.CrossRefGoogle ScholarPubMed
Hoffman, J. F. 2001 Questions for red blood cell physiologists to ponder in this millennium. Blood Cells Mol. Dis. 27, 5761.Google Scholar
Keller, S. & Skalak, R. 1982 Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid Mech. 120, 2747.CrossRefGoogle Scholar
Li, J., Dao, M., Lim, C. T. & Suresh, S. 2005 Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys. J. 88, 3707.Google Scholar
Lim, G., Wortis, M. & Mukhopadhyay, R. 2002 Stomatocyte–discocyte–echinocyte sequence of the human red blood cell: evidence for the bilayer couple hypothesis from membrane mechanics. Proc. Natl Acad. Sci. USA 99, 1676616769.Google Scholar
Lim, G., Wortis, M. & Mukhopadhyay, R. 2008 Soft Matter, Vol 4: Lipid Bilayers and Red Blood Cells. Wiley-VCH.Google Scholar
Mohandas, N. & Evans, E. A. 1994 Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu. Rev. Biophys. Biomol. Struct. 23, 787818.Google Scholar
Noguchi, H. 2009a Dynamic modes of red blood cells in oscillatory shear flow. Phys. Rev. E 81, 061920.Google Scholar
Noguchi, H. 2009b Swinging and synchronized rotations of red blood cells in simple shear flow. Phys. Rev. E 80, 021902.Google Scholar
Omori, T., Imai, Y., Yamaguchi, T. & Ishikawa, T. 2012a Reorientation of a nonspherical capsule in creeping shear flow. Phys. Rev. Lett. 108, 138102.Google Scholar
Omori, T., Ishikawa, T., Barthès-Biesel, D., Salsac, A., Imai, Y. & Yamaguchi, T. 2012b Tension of red blood cell membrane in simple shear flow. Phys. Rev. E 86, 056321.Google Scholar
Otter, W. K. & Shkulipa, S. A. 2007 Intermonolayer friction and surface shear viscosity of lipid bilayer membranes. Biophys. J. 93, 423433.Google Scholar
Peng, Z., Asaro, R. & Zhu, Q. 2010 Multiscale simulation of erythrocyte membranes. Phys. Rev. E 81, 031904.Google Scholar
Peng, Z., Asaro, R. & Zhu, Q. 2011 Multiscale modeling of erythrocytes in Stokes flow. J. Fluid Mech. 686, 299337.Google Scholar
Peng, Z., Li, X., Pivkin, I. V., Dao, M., Karniadakis, G. E. & Suresh, S. 2013 Lipid bilayer and cytoskeletal interactions in a red blood cell. Proc. Natl Acad. Sci. USA 110, 1335613361.Google Scholar
Peng, Z., Mashayekh, A. & Zhu, Q. 2014 Erythrocyte responses in low shear rate flows – effects of non-biconcave stress-free state in cytoskeleton. J. Fluid Mech. 742, 96118.CrossRefGoogle Scholar
Peng, Z. & Zhu, Q. 2013 Deformation of the erythrocyte cytoskeleton in tank treading motions. Soft Matt. 9, 76177627.Google Scholar
Peterson, M. A., Strey, H. & Sackmann, E. 1992 Theoretical and phase contrast microscopic eigenmode analysis of erythrocyte flicker: amplitudes. J. Phys. II France 2, 12731285.Google Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.Google Scholar
Seifert, U., Berndl, K. & Lipowsky, R. 1991 Shape transformations of vesicles: phase diagram for spontaneous-curvature and bilayer-coupling models. Phys. Rev. A 44, 11821202.CrossRefGoogle ScholarPubMed
Skotheim, J. M. & Secomb, T. W. 2007 Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition. Phys. Rev. Lett. 98, 078301.Google Scholar
Svoboda, K., Schmidt, C. F., Branton, D. & Block, S. M. 1992 Conformation and elasticity of the isolated red blood cell membrane skeleton. Biophys. J. 63, 784793.Google Scholar
Tran-Son-Tay, R., Sutera, S. & Rao, P. 1984 Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion. Biophys. J. 46, 6572.Google Scholar
Tsubota, K., Wada, S. & Liu, H. 2014 Elastic behavior of a red blood cell with the membrane’s nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion. Biomech. Model Mechanobiol. 13, 735746.Google Scholar
Vlahovska, P., Young, Y. N., Danker, G. & Misbah, C. 2011 Dynamics of a non-spherical microcapsule with incompressible interface in shear flow. J. Fluid Mech. 678, 221247.Google Scholar
Walter, J., Salsac, A. V., Barthès-Biesel, D. & Le Tallec, P. 2010 Coupling of finite element and boundary integral methods for a capsule in a Stokes flow. Intl J. Numer. Meth. Engng 83, 829.Google Scholar
Waugh, R. E. & Evans, E. A. 1979 Thermoelasticity of red blood cell membrane. Biophys. J. 26, 115131.Google Scholar
Yazdani, A. & Bagchi, P. 2011 Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow. Phys. Rev. E 84, 026314.Google Scholar
Yazdani, A., Kalluri, R. & Bagchi, P. 2011 Tank-treading and tumbling frequencies of capsules and red blood cells. Phys. Rev. E 83, 046305.Google Scholar
Zhu, Q. & Asaro, R. 2008 Spectrin folding versus unfolding reactions and RBC membrane stiffness. Biophys. J. 94, 25292545.Google Scholar
Zhu, Q., Vera, C., Asaro, R., Sche, P. & Sung, L. A. 2007 A hybrid model for erythrocyte membrane: a single unit of protein network coupled with lipid bilayer. Biophys. J. 93, 386400.Google Scholar