Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T05:05:47.553Z Has data issue: false hasContentIssue false

Stability of developing flow in a pipe: non-axisymmetric disturbances

Published online by Cambridge University Press:  20 April 2006

Vijay K. Garg
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Kanpur, India

Abstract

Spatial stability results for the developing flow in a rigid circular pipe are presented for the velocity profile obtained by the Hornbeck (1963) method and compared with the available temporal stability results for the velocity profile obtained by Sparrow, Lin & Lundgren (1964). The disturbance is taken to be non-axisymmetric, and Gram–Schmidt orthonormalization is used to remove the parasitic errors during numerical integration.

It is found that the stability characteristics are very sensitive to the velocity field in the inlet region. At all axial locations investigated the critical frequency and critical wavenumber for the Hornbeck profile are larger than the corresponding values for the Sparrow profile while the critical Reynolds number is smaller. The minimum critical Reynolds number for the Hornbeck profile is only 13250 and occurs at $\overline{X} = 0.0032$ compared with 19780 at $\overline{X} = 0.0049$ for the Sparrow profile. The maximum difference between the two velocity profiles occurs near the boundary-layer edge but is within 5%. Results for the Hornbeck profile are found to be closer to the experimental data of Sarpkaya (1975).

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, B. H. P. 1969 Ph.D. thesis, University of Rochester.
Chen, T. S. & Sparrow, E. M. 1967 J. Fluid Mech. 30, 209.
Collatz, L. 1966 The Numerical Treatment of Differential Equations. Springer.
Crane, C. M. & Burley, D. M. 1976 J. Comp. Appl. Maths. 2, 95.
Garg, V. K. 1980 Comp. Meth. Appl. Mech. Engng 22, 87.
Garg, V. K. & Rouleau, W. T. 1972 J. Fluid Mech. 54, 113.
Gupta, S. C. & Garg, V. K. 1981 Phys. Fluids 24, 576.
Hornbeck, R. W. 1963 Appl. Sci. Res. A 13, 224.
Huang, L. M. 1973 Ph.D. thesis, University of Missouri-Rolla.
Huang, L. M. & Chen, T. S. 1974a Phys. Fluids 17, 245.
Huang, L. M. & Chen, T. S. 1974b J. Fluid Mech. 63, 183.
Leite, R. J. 1959 J. Fluid Mech. 5, 81.
Muller, D. E. 1956 Math. Tables Aids Comp. 10, 208.
Salwen, H. & Grosch, C. E. 1972 J. Fluid Mech. 54, 93.
Sarpkaya, T. 1975 J. Fluid Mech. 68, 345.
Schmidt, F. W. & Zeldin, B. 1969 A.I.Ch.E.J. 15, 612.
Shah, R. K. 1978 Trans. A.S.M.E. I., J. Fluids Engng 100, 177.
Sparrow, E. M., Lin, T. S. & Lundgren, T. S. 1964 Phys. Fluids 7, 338.
Spielberg, K. & Timan, H. 1960 J. Appl. Mech. 27, 381.
Squire, H. B. 1933 Proc. Royal Soc. A 142, 621.
Tatsumi, T. 1952 J. Phys. Soc. Japan 7, 495.