Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T18:52:45.179Z Has data issue: false hasContentIssue false

Stability and bifurcation of planetary dynamo models

Published online by Cambridge University Press:  23 November 2011

E. Dormy*
Affiliation:
CNRS & MAG (ENS/IPGP), Département de Physique, Ecole Normale Supérieure, 24 rue Lhomond, 75252 Paris CEDEX 05, France
*
Email address for correspondence: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Rapidly rotating dynamos, relevant to the origin of the Earth magnetic field, are difficult to model owing to the extreme parameter regimes that occur in their dynamics. Numerical models alone fail to approach the correct regime. However, progress can be achieved by combining numerical and analytical methods. This can offer a better understanding of the variety of behaviour observed near the onset of dynamo action, as seen in the recent study of Sreenivasan & Jones (J. Fluid Mech., this issue, vol. 688, 2011, pp. 5–30).

Type
Focus on Fluids
Copyright
Copyright © Cambridge University Press 2011

References

1. Busse, F. H. 1970 Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44, 441460.Google Scholar
2. Christensen, U., Olson, P. & Glatzmaier, G. A. 1999 Numerical modelling of the geodynamo: a systematic parameter study. Geophys. J. Intl 138, 393409.Google Scholar
3. Dormy, E., Soward, A. M., Jones, C. A., Jault, D. & Cardin, P. 2004 The onset of thermal convection in rotating spherical shells. J. Fluid Mech. 501, 4370.Google Scholar
4. Jones, C. A., Soward, A. M. & Mussa, A. I. 2000 The onset of thermal convection in a rapidly rotating sphere. J. Fluid Mech. 405, 157179.Google Scholar
5. Kuang, W., Jiang, W. & Wang, T. 2008 Sudden termination of Martian dynamo: implications from subcritical dynamo simulations. Geophys. Res. Lett. 35, L14204.CrossRefGoogle Scholar
6. Kutzner, C. & Christensen, U. 2002 From stable dipolar towards reversing numerical dynamos. Phys. Earth Planet. Inter. 131, 2945.CrossRefGoogle Scholar
7. Morin, V. 2005 Instabilités et bifurcations associées à la modélisation de la Géodynamo. PhD thesis, Université Paris VII http://tel.archives-ouvertes.fr/tel-00011484/en/.Google Scholar
8. Morin, V. & Dormy, E. 2009 The dynamo bifurcation in rotating spherical shells. Intl J. Mod. Phys. B 23 (28-29), 54675482.CrossRefGoogle Scholar
9. Roberts, P. H. 1965 On the thermal instability of a highly rotating fluid sphere. Astrophys. J. 141 (1), 240250.CrossRefGoogle Scholar
10. Roberts, P. H. 1968 On the thermal instability of a rotating-fluid sphere containing heat sources. Phil. Trans. R. Soc. Lond. A 263, 93117.Google Scholar
11. Roberts, P. H. 1988 Future of geodynamo theory. Geophys. Astrophys. Fluid Dyn. 44, 331.CrossRefGoogle Scholar
12. Simitev, R. D. & Busse, F. H. 2009 Bistability and hysteresis of dipolar dynamos generated by turbulent convection in rotating spherical shells. Earth Planet. Sci. Lett. 85, 19001.Google Scholar
13. Soward, A. M. & Jones, C. A. 1983 -Dynamos and Taylor’s constraint. Geophys. Astrophys. Fluid Dyn. 27, 87122.CrossRefGoogle Scholar
14. Sreenivasan, B. & Jones, C. A. 2011 Helicity generation and subcritical behaviour in rapidly rotating dynamos. J. Fluid Mech. 688, 530.Google Scholar
15. Yano, J.-I. 1992 Asymptotic theory of thermal convection in rapidly rotating systems. J. Fluid Mech. 243, 103131.CrossRefGoogle Scholar