Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-07T09:13:38.191Z Has data issue: false hasContentIssue false

Spontaneous generation of inertial waves from boundary turbulence in a librating sphere

Published online by Cambridge University Press:  11 July 2013

Alban Sauret*
Affiliation:
Institut de Recherche sur les Phénomènes Hors Équilibre, CNRS and Aix-Marseille University, 49 rue F. Joliot-Curie, F-13013 Marseille, France
David Cébron
Affiliation:
Institut de Recherche sur les Phénomènes Hors Équilibre, CNRS and Aix-Marseille University, 49 rue F. Joliot-Curie, F-13013 Marseille, France Institut fur Geophysik, ETH Zürich, Sonneggstrasse 5, CH-8092 Zürich, Switzerland
Michael Le Bars
Affiliation:
Institut de Recherche sur les Phénomènes Hors Équilibre, CNRS and Aix-Marseille University, 49 rue F. Joliot-Curie, F-13013 Marseille, France Department of Earth and Space Sciences, University of California, Los Angeles, CA 90095-1567, USA
*
Email address for correspondence: [email protected]

Abstract

In this work, we report the excitation of inertial waves in a librating sphere even for libration frequencies where these waves are not directly forced. This spontaneous generation comes from the localized turbulence induced by the centrifugal instabilities in the Ekman boundary layer near the equator and does not depend on the libration frequency. We characterize the key features of these inertial waves in analogy with previous studies of the generation of internal waves in stratified flows from localized turbulent patterns. In particular, the temporal spectrum exhibits preferred values of excited frequency. This first-order phenomenon is generic to any rotating flow in the presence of localized turbulence and is fully relevant for planetary applications.

Type
Rapids
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldridge, K. D. & Toomre, A. 1969 Axisymmetric inertial oscillations of a fluid in a rotating spherical container. J. Fluid Mech. 37, 307323.Google Scholar
Boffetta, G. & Ecke, R. E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427451.CrossRefGoogle Scholar
Busse, F. H. 2010 Mean zonal flows generated by librations of a rotating spherical cavity. J. Fluid Mech. 650, 505512.Google Scholar
Calkins, M. A., Noir, J., Eldredge, J. & Aurnou, J. M. 2010 Axisymmetric simulations of libration-driven fluid dynamics in a spherical shell geometry. Phys. Fluids 22, 086602.Google Scholar
Cébron, D., Le Bars, M., Noir, J. & Aurnou, J. M. 2012 Libration driven elliptical instability. Phys. Fluids 24, 061703.CrossRefGoogle Scholar
Dohan, K. & Sutherland, B. R. 2003 Internal waves generated from a turbulent mixed region. Phys. Fluids 15, 488498.CrossRefGoogle Scholar
Dohan, K. & Sutherland, B. R. 2005 Numerical and laboratory generation of internal waves from turbulence. Dyn. Atmos. Oceans 40, 4356.Google Scholar
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Kelvin, Lord 1880 Vibrations of a columnar vortex. Phil. Mag. 10, 155168.Google Scholar
Koch, S., Harlander, U., Egbers, C. & Hollerbach, R. 2013 Inertial waves in a spherical shell induced by librations of the inner sphere: experimental and numerical results. Fluid Dyn. Res. 45, 035504.Google Scholar
Lopez, J. M. & Marques, F. 2011 Instabilities and inertial waves generated in a librating cylinder. J. Fluid Mech. 687, 171193.Google Scholar
Morize, C., Le Bars, M., Le Gal, P. & Tilgner, A. 2010 Experimental determination of zonal winds driven by tides. Phys. Rev. Lett. 104, 214501.Google Scholar
Noir, J., Calkins, M. A., Lasbleis, M., Cantwell, J. & Aurnou, J. M. 2010 Experimental study of libration-driven zonal flows in a straight cylinder. Phys. Earth Planet. Inter. 182, 98106.CrossRefGoogle Scholar
Noir, J., Cébron, D., Le Bars, M., Sauret, A. & Aurnou, J. M. 2012 Experimental study of libration-driven flows in non-axisymmetric containers. Phys. Earth Planet. Inter. 204–205, 110.CrossRefGoogle Scholar
Noir, J., Hemmerlin, F., Wicht, J., Baca, S. M. & Aurnou, J. M. 2009 An experimental and numerical study of librationally driven flow in planetary cores and subsurface oceans. Phys. Earth Planet. Inter. 173, 141152.Google Scholar
Rambaux, N., Van Hoolst, T. & Karatekin, Ö. 2011 Librational response of Europa, Ganymede, and Callisto with an ocean for non-Keplerian orbit. A & A 527, A118.CrossRefGoogle Scholar
Sauret, A., Cébron, D., Le Bars, M. & Le Dizès, S. 2012 Fluid flows in a librating cylinder. Phys. Fluids 24, 026603.Google Scholar
Sauret, A., Cébron, D., Morize, C. & Le Bars, M. 2010 Experimental and numerical study of mean zonal flows generated by librations of a rotating spherical cavity. J. Fluid Mech. 662, 260268.Google Scholar
Sauret, A. & Le Dizès, S. 2013 Libration-induced mean flow in a spherical shell. J. Fluid Mech. 718, 181209.Google Scholar
Smith, L. M. & Waleffe, F. 1999 Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids 11, 1608.Google Scholar
Taylor, J. R. & Sarkar, S. 2007 Internal gravity waves generated by a turbulent bottom Ekman layer. J. Fluid Mech. 590, 331354.Google Scholar
Townsend, A. A. 1966 Internal waves produced by a convective layer. J. Fluid Mech. 24, 307319.CrossRefGoogle Scholar
Veronis, G. 1970 The analogy between rotating and stratified fluids. Annu. Rev. Fluid Mech. 2, 37661.Google Scholar
Zhang, K., Chan, K. H., Liao, X. & Aurnou, J. M. 2013 The non-resonant response of fluid in a rapidly rotating sphere undergoing longitudinal libration. J. Fluid Mech. 720, 212235.Google Scholar