Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T11:02:26.078Z Has data issue: false hasContentIssue false

Spin-up of a two-component superfluid: self-consistent container feedback

Published online by Cambridge University Press:  10 March 2014

Cornelis A. van Eysden*
Affiliation:
School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
A. Melatos
Affiliation:
School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
*
Email address for correspondence: [email protected]

Abstract

The coupled dynamic response of a rigid container filled with a two-component superfluid undergoing Ekman pumping is calculated self-consistently. The container responds to the back-reaction torque exerted by the viscous component of the superfluid and an arbitrary external torque. The resulting motion is described by a pair of coupled integral equations for which solutions are easily obtained numerically. If the container is initially accelerated impulsively then set free, it relaxes quasi-exponentially to a steady state over multiple time scales, which are a complex combination of the Ekman number, superfluid mutual friction coefficients, the superfluid density fraction, and the varying hydrodynamic torque at different latitudes. The spin-down of containers with relatively small moments of inertia (compared with that of the contained fluid) depends weakly on the above parameters and occurs faster than the Ekman time. When the fluid components are initially differentially rotating, the container can ‘overshoot’ its asymptotic value before increasing again. When a constant external torque is applied, the superfluid components rotate differentially and non-uniformly in the long term. For an oscillating external torque, the amplitude and phase of the oscillation are most sensitive to the driving frequency for containers with relatively small moments of inertia. Applications to superfluid helium experiments and neutron stars are also discussed.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abney, M. & Epstein, R. I. 1996 Ekman pumping in compact astrophysical bodies. J. Fluid Mech. 312, 327340.CrossRefGoogle Scholar
Abney, M., Epstein, R. I. & Olinto, A. V. 1996 Observational constraints on the internal structure and dynamics of the Vela pulsar. Astrophys. J. Lett. 466, L91.CrossRefGoogle Scholar
Amberg, G. & Ungarish, M. 1993 Spin-up from rest of a mixture: numerical simulation and asymptotic theory. J. Fluid Mech. 246, 443464.CrossRefGoogle Scholar
Anderson, P. W. & Itoh, N. 1975 Pulsar glitches and restlessness as a hard superfluidity phenomenon. Nature 256, 2527.CrossRefGoogle Scholar
Anderson, P. W., Pines, D., Ruderman, M. & Shaham, J. 1978 Questions about rotating superfluid dynamics: problems of pulsar astrophysics accessible in the laboratory. J. Low Temp. Phys. 30, 839847.CrossRefGoogle Scholar
Bennett, M. F., van Eysden, C. A. & Melatos, A. 2010 Continuous-wave gravitational radiation from pulsar glitch recovery. Mon. Not. R. Astron. Soc. 409, 17051718.CrossRefGoogle Scholar
Benton, E. R. & Clark, A. 1974 Spin-up. Annu. Rev. Fluid Mech. 6, 257280.CrossRefGoogle Scholar
Benton, E. R. & Loper, D. E. 1969 On the spin-up of an electrically conducting fluid. Part 1. The unsteady hydromagnetic Ekman–Hartmann boundary-layer problem. J. Fluid Mech. 39, 561586.CrossRefGoogle Scholar
Clark, A., Clark, P. A., Thomas, J. H. & Lee, N.-H. 1971 Spin-up of a strongly stratified fluid in a sphere. J. Fluid Mech. 45, 131149.CrossRefGoogle Scholar
Donnelly, R. J. 2005 Quantized Vortices in Helium II. Cambridge University Press.Google Scholar
Duck, P. & Foster, M. 2001 Spin-up of homogeneous and stratified fluids. Annu. Rev. Fluid Mech. 33, 231263.CrossRefGoogle Scholar
Easson, I. 1979 Postglitch behavior of the plasma inside neutron stars. Astrophys. J. 228, 257267.CrossRefGoogle Scholar
Espinoza, C. M., Lyne, A. G., Stappers, B. W. & Kramer, M. 2011 A study of 315 glitches in the rotation of 102 pulsars. MNRAS 414, 16791704.CrossRefGoogle Scholar
van Eysden, C. A. & Melatos, A. 2008 Gravitational radiation from pulsar glitches. Class. Quantum Grav. 25 (22), 225020.CrossRefGoogle Scholar
van Eysden, C. A. & Melatos, A. 2010 Pulsar glitch recovery and the superfluidity coefficients of bulk nuclear matter. Mon. Not. R. Astron. Soc. 409, 12531268.CrossRefGoogle Scholar
van Eysden, C. A. & Melatos, A. 2011 Spin down of superfluid-filled vessels: theory versus experiment. J. Low Temp. Phys. 165, 114.CrossRefGoogle Scholar
van Eysden, C. A. & Melatos, A. 2012 Interpreting superfluid spin up through the response of the container. J. Low Temp. Phys. 166, 151170.CrossRefGoogle Scholar
van Eysden, C. A. & Melatos, A. 2013 Spin-up of a two-component superfluid: analytic theory in arbitrary geometry. J. Fluid Mech. 729, 180213.CrossRefGoogle Scholar
Glaberson, W. I., Johnson, W. W. & Ostermeier, R. M. 1974 Instability of a vortex array in He II. Phys. Rev. Lett. 33, 11971200.CrossRefGoogle Scholar
Glampedakis, K. & Andersson, N. 2006 Ekman layer damping of r modes revisited. Mon. Not. R. Astron. Soc. 371, 13111321.CrossRefGoogle Scholar
Goldbaum, D. S. & Mueller, E. J. 2009 Commensurability and hysteretic evolution of vortex configurations in rotating optical lattices. Phys. Rev. A 79 (6), 063625.CrossRefGoogle Scholar
Greenspan, H. P. 1968 In The Theory of Rotating Fluids Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press.Google Scholar
Greenspan, H. P. & Howard, L. N. 1963 On a time-dependent motion of a rotating fluid. J. Fluid Mech. 17, 385404.CrossRefGoogle Scholar
Hewitt, R. E., Davies, P. A., Duck, P. W. & Foster, M. R. 1999 Spin-up of stratified rotating flows at large Schmidt number: experiment and theory. J. Fluid Mech. 389, 169207.CrossRefGoogle Scholar
Jackson, B. & Barenghi, C. F. 2006 Hysteresis effects in rotating Bose–Einstein condensates. Phys. Rev. A 74 (4), 043618.CrossRefGoogle Scholar
Jones, C. A., Khan, K. B., Barenghi, C. F. & Henderson, K. L. 1995 Appearance of vortices in rotating He II. Phys. Rev. B 51, 16,17416,184.CrossRefGoogle ScholarPubMed
Loper, D. E. 1971 Hydromagnetic spin-up of a fluid confined by two flat electrically conducting boundaries. J. Fluid Mech. 50, 609623.CrossRefGoogle Scholar
Lyne, A. G. & Graham-Smith, F. 1998 Pulsar Astronomy. Cambridge University Press.Google Scholar
Lyne, A. G., Shemar, S. L. & Smith, F. G. 2000 Statistical studies of pulsar glitches. Mon. Not. R. Astron. Soc. 315, 534542.CrossRefGoogle Scholar
Melatos, A., Peralta, C. & Wyithe, J. S. B. 2008 Avalanche dynamics of radio pulsar glitches. Astrophys. J. 672, 11031118.CrossRefGoogle Scholar
Mendell, G. 1998 Magnetohydrodynamics in superconducting–superfluid neutron stars. Mon. Not. R. Astron. Soc. 296, 903912.CrossRefGoogle Scholar
Parker, N. G. & Adams, C. S. 2006 Response of an atomic Bose–Einstein condensate to a rotating elliptical trap. J. Phys. B: At., Mol. Opt. Phys. 39, 4355.CrossRefGoogle Scholar
Pedlosky, J. 1967 The spin up of a stratified fluid. J. Fluid Mech. 28, 463479.CrossRefGoogle Scholar
Peralta, C., Melatos, A., Giacobello, M. & Ooi, A. 2005 Global three-dimensional flow of a neutron superfluid in a spherical shell in a neutron star. Astrophys. J. 635, 12241232.CrossRefGoogle Scholar
Reisenegger, A. 1993 The spin-up problem in helium II. J. Low Temp. Phys. 92, 77106.CrossRefGoogle Scholar
Reisenegger, A. & Goldreich, P. 1992 A new class of g-modes in neutron stars. Astrophys. J. 395, 240249.CrossRefGoogle Scholar
Stewartson, K. 1953 On the flow between two rotating coaxial disks. Proc. Camb. Phil. Soc. 49, 333341.CrossRefGoogle Scholar
Tsakadze, J. S. & Tsakadze, S. J. 1972 Relaxation phenomena at accelaration of rotation of a spherical vessel with helium II and relaxation in pulsars. Phys. Lett. A 41, 197199.CrossRefGoogle Scholar
Tsakadze, J. S. & Tsakadze, S. J. 1973 Measurement of the relaxation time on acceleration of vessels with helium II and superfluidity in pulsars. Sov. Phys. JETP 37, 918921.Google Scholar
Tsakadze, J. S. & Tsakadze, S. J. 1974 On the problem of relaxation time determination in superfluids when their rotation is accelerated. Phys. Lett. A 47, 477478.CrossRefGoogle Scholar
Tsakadze, J. S. & Tsakadze, S. J. 1980 Properties of slowly rotating helium II and the superfluidity of pulsars. J. Low Temp. Phys. 39, 649688.CrossRefGoogle Scholar
Vinen, W. F. & Niemela, J. J. 2002 Quantum turbulence. J. Low Temp. Phys. 128, 167231.CrossRefGoogle Scholar
Walin, G. 1969 Some aspects of time-dependent motion of a stratified rotating fluid. J. Fluid Mech. 36, 289307.CrossRefGoogle Scholar
Wang, N., Manchester, R. N., Pace, R. T., Bailes, M., Kaspi, V. M., Stappers, B. W. & Lyne, A. G. 2000 Glitches in southern pulsars. Mon. Not. R. Astron. Soc. 317, 843860.CrossRefGoogle Scholar
Warszawski, L. & Melatos, A. 2011 Gross–Pitaevskii model of pulsar glitches. Mon. Not. R. Astron. Soc. 415, 16111630.CrossRefGoogle Scholar
Warszawski, L., Melatos, A. & Berloff, N. G. 2012 Unpinning triggers for superfluid vortex avalanches. Phys. Rev. B 85 (10), 104503.CrossRefGoogle Scholar