Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T21:56:55.382Z Has data issue: false hasContentIssue false

Spectrograms of ship wakes: identifying linear and nonlinear wave signals

Published online by Cambridge University Press:  06 December 2016

Ravindra Pethiyagoda
Affiliation:
School of Mathematical Sciences, Queensland University of Technology, Brisbane QLD 4001, Australia
Scott W. McCue*
Affiliation:
School of Mathematical Sciences, Queensland University of Technology, Brisbane QLD 4001, Australia
Timothy J. Moroney
Affiliation:
School of Mathematical Sciences, Queensland University of Technology, Brisbane QLD 4001, Australia
*
Email address for correspondence: [email protected]

Abstract

A spectrogram is a useful way of using short-time discrete Fourier transforms to visualise surface height measurements taken of ship wakes in real-world conditions. For a steadily moving ship that leaves behind small-amplitude waves, the spectrogram is known to have two clear linear components, a sliding-frequency mode caused by the divergent waves and a constant-frequency mode for the transverse waves. However, recent observations of high-speed ferry data have identified additional components of the spectrograms that are not yet explained. We use computer simulations of linear and nonlinear ship wave patterns and apply time–frequency analysis to generate spectrograms for an idealised ship. We clarify the role of the linear dispersion relation and ship speed on the two linear components. We use a simple weakly nonlinear theory to identify higher-order effects in a spectrogram and, while the high-speed ferry data are very noisy, we propose that certain additional features in the experimental data are caused by nonlinearity. Finally, we provide a possible explanation for a further discrepancy between the high-speed ferry spectrograms and linear theory by accounting for ship acceleration.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benassai, G., Piscopo, V. & Scamardella, A. 2015 Spectral analysis of waves produced by HSC for coastal management. J. Mar. Sci. Technol. 112.Google Scholar
Brown, E. D., Buchsbaum, S. B., Hall, R. E., Penhune, J. P., Schmitt, K. F., Watson, K. M. & Wyatt, D. C. 1989 Observations of a nonlinear solitary wave packet in the Kelvin wake of a ship. J. Fluid Mech. 204, 263293.CrossRefGoogle Scholar
Chung, Y. K. & Lim, J. S. 1991 A review of the Kelvin ship wave pattern. J. Ship Res. 35, 191197.CrossRefGoogle Scholar
Cohen, L. 1989 Time-frequency distributions – a review. Proc. IEEE 77, 941981.CrossRefGoogle Scholar
Darmon, A., Benzaquen, M. & Raphaël, E. 2014 Kelvin wake pattern at large Froude numbers. J. Fluid Mech. 738, R3.CrossRefGoogle Scholar
Darrigol, O. 2003 The spirited horse, the engineer, and the mathematician: water waves in nineteenth-century hydrodynamics. Arch. Hist. Exact Sci. 58, 2195.CrossRefGoogle Scholar
Didenkulova, I., Sheremet, A., Torsvik, T. & Soomere, T. 2013 Characteristic properties of different vessel wake signals. J. Coast. Res. SI 65, 213218.CrossRefGoogle Scholar
Ellingsen, S. Å. 2014 Ship waves in the presence of uniform vorticity. J. Fluid Mech. 742, R2.CrossRefGoogle Scholar
Forbes, L. K. 1989 An algorithm for 3-dimensional free-surface problems in hydrodynamics. J. Comput. Phys. 82, 330347.CrossRefGoogle Scholar
Harris, F. J. 1978 On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66, 5183.CrossRefGoogle Scholar
Havelock, T. H. 1932 The theory of wave resistance. Proc. R. Soc. Lond. A 138, 339348.Google Scholar
Hogben, N. 1972 Nonlinear distortion of the Kelvin ship-wave pattern. J. Fluid Mech. 55, 513528.CrossRefGoogle Scholar
Kurennoy, D., Soomere, T. & Parnell, K. 2009 Variability in the properties of wakes generated by high-speed ferries. J. Coast. Res. 56, 519523.Google Scholar
Li, Y. & Ellingsen, S. Å. 2016 Ship waves on uniform shear current at finite depth: wave resistance and critical velocity. J. Fluid Mech. 791, 539567.CrossRefGoogle Scholar
MarineTraffic AIS Vessel Tracking – AIS Positions Maps. Retrieved 26 February 2016, from http://www.marinetraffic.com/en/ais/home/shipid:352956/zoom:10.Google Scholar
Maruo, H. 1967 High-and low-aspect ratio approximation of planing surfaces. Schiffstechnik 14, 5764.Google Scholar
Michell, J. H. 1898 The wave-resistance of a ship. Phil. Mag. 45, 106123.CrossRefGoogle Scholar
Milgram, J. H. 1988 Theory of radar backscatter from short waves generated by ships, with application to radar (SAR) imagery. J. Ship Res. 32, 5469.CrossRefGoogle Scholar
Munk, W. H., Scully-Power, P. & Zachariasen, F. 1986 The Bakerian lecture, 1986. Ships from space. Proc. R. Soc. Lond. A. 412, 231254.Google Scholar
Noblesse, F. 1981 Alternative integral representations for the Green function of the theory of ship wave resistance. J. Engng Maths 15, 241265.CrossRefGoogle Scholar
Noblesse, F., He, J., Zhu, Y., Hong, L., Zhang, C., Zhu, R. & Yang, C. 2014 Why can ship wakes appear narrower than Kelvin’s angle? Eur. J. Mech. (B/Fluids) 46, 164171.CrossRefGoogle Scholar
Părău, E. & Vanden-Broeck, J.-M. 2002 Nonlinear two- and three-dimensional free surface flows due to moving disturbances. Eur. J. Mech. (B/Fluids) 21, 643656.CrossRefGoogle Scholar
Părău, E., Vanden-Broeck, J.-M. & Cooker, M. J. 2007 Nonlinear three-dimensional interfacial flows with a free surface. J. Fluid Mech. 591, 481494.CrossRefGoogle Scholar
Parnell, K., Delpeche, N., Didenkulova, I., Dolphin, T., Erm, A., Kask, A., Kelpšaite, L., Kurennoy, D., Quak, E. & Räämet, A. 2008 Far-field vessel wakes in Tallinn Bay. Est. J. Engng 14, 273302.CrossRefGoogle Scholar
Peters, A. S. 1949 A new treatment of the ship wave problem. Commun. Pure Appl. Maths 2, 123148.CrossRefGoogle Scholar
Pethiyagoda, R., McCue, S. W., Moroney, T. J. & Back, J. M. 2014a Jacobian-free Newton–Krylov methods with GPU acceleration for computing nonlinear ship wave patterns. J. Comput. Phys. 269, 297313.CrossRefGoogle Scholar
Pethiyagoda, R., McCue, S. W. & Moroney, T. J. 2014b What is the apparent angle of a Kelvin ship wave pattern? J. Fluid Mech. 758, 468485.CrossRefGoogle Scholar
Pethiyagoda, R., McCue, S. W. & Moroney, T. J. 2015 Wake angle for surface gravity waves on a finite depth fluid. Phys. Fluids 27, 061701.CrossRefGoogle Scholar
Rabaud, M. & Moisy, F. 2013 Ship wakes: Kelvin or Mach angle? Phys. Rev. Lett. 110, 214503.CrossRefGoogle ScholarPubMed
Reed, A. M. & Milgram, J. H. 2002 Ship wakes and their radar images. Annu. Rev. Fluid Mech. 34, 469502.CrossRefGoogle Scholar
Sheremet, A., Gravois, U. & Tian, M. 2013 Boat-wake statistics at Jensen Beach, Florida. J. Waterways Port Coast. Ocean Engng 139, 286294.CrossRefGoogle Scholar
Soomere, T. 2007 Nonlinear components of ship wake waves. Appl. Mech. Rev. 60, 120138.CrossRefGoogle Scholar
Thomson, W. 1887 On ship waves. Proc. Inst. Mech. Engrs 38, 409434.CrossRefGoogle Scholar
Torsvik, T., Soomere, T., Didenkulova, I. & Sheremet, A. 2015a Identification of ship wake structures by a time-frequency method. J. Fluid Mech. 765, 229251.CrossRefGoogle Scholar
Torsvik, T., Herrmann, H., Didenkulova, I. & Rodin, A. 2015b Analysis of ship wake transformation in the coastal zone using time-frequency methods. Proc. Est. Acad. Sci. 64, 379388.CrossRefGoogle Scholar
Tuck, E. O. 1975 Low-aspect-ratio flat-ship theory. J. Hydronaut. 9, 312.CrossRefGoogle Scholar
Tuck, E. O., Collins, J. I. & Wells, W. H. 1971 On ship wave patterns and their spectra. J. Ship Res. 15, 1121.CrossRefGoogle Scholar
Ursell, F. 1960 On Kelvin’s ship-wave pattern. J. Fluid Mech. 8, 418431.CrossRefGoogle Scholar
Wehausen, J. V. & Laitone, E. V. 1960 Surface Waves. Springer.CrossRefGoogle Scholar
Wyatt, D. C. & Hall, R. E. 1988 Analysis of ship-generated surface waves using a method based upon the local Fourier transform. J. Geophys. Res. 93 (C11), 1413314164.CrossRefGoogle Scholar
Zhu, Y., He, J., Zhang, C., Wu, H., Wan, D., Zhu, R. & Noblesse, F. 2015 Farfield waves created by a monohull ship in shallow water. Eur. J. Mech. (B/Fluids) 49, 226234.CrossRefGoogle Scholar