Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-04T04:18:41.232Z Has data issue: false hasContentIssue false

Spectral modelling of homogeneous non-isotropic turbulence

Published online by Cambridge University Press:  20 April 2006

C. Cambon
Affiliation:
Laboratoire de Mécanique des Fluides, Ecole Centrale de Lyon, 69130 Ecully, France
D. Jeandel
Affiliation:
Laboratoire de Mécanique des Fluides, Ecole Centrale de Lyon, 69130 Ecully, France
J. Mathieu
Affiliation:
Laboratoire de Mécanique des Fluides, Ecole Centrale de Lyon, 69130 Ecully, France

Abstract

The paper describes a method to calculate homogeneous anisotropic turbulent fields associated with a constant mean velocity gradient. The equations governing the Fourier transform of the triple velocity correlations are closed by using an extended eddy-damped quasi-normal approximation. An angular parametrization of the second-order spectral tensor is introduced in order to integrate analytically all the directional terms over a spherical shell. Numerical solutions of the model are presented for typical homogeneous anisotropic flows.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

André, J. C. & Lesieur, M. 1977 Influence of helicity on the evolution of isotropic turbulence at high Reynolds number. J. Fluid Mech. 81, 187207.Google Scholar
Burgers, J. M. & Mitchner, M. 1953 An homogeneous isotropic turbulence connected with a mean motion having a constant velocity gradient. Proc. Kon. Ned. Akad. 56, 228235, 343354.Google Scholar
Cambon, C. 1979 Modélisation spectrale en turbulence homogène anisotrope. Thèse de Docteur-Ingénieur, Université Claude Bernard, Lyon.
Comte-Bellot, G., Corrsin, S. 1971 Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated, ‘isotropic turbulence’. J. Fluid Mech. 48, 273337.Google Scholar
Craya, A. 1958 Contribution à l'analyse de la turbulence associée à des vitesses moyennes. P.S.T. no. 345.Google Scholar
Gence, J. N. 1979 Etude d'une turbulence isotrope soumise à deux déformations pures planes successives. Thèse de Doctorat d'Etat ès Sciences, Université Claude Bernard, Lyon.
Kraichnan, R. H. 1972 Test field model for inhomogeneous turbulence. J. Fluid Mech. 56, 287304.Google Scholar
Launder, B. E., Reece, G. J. & Rodi, W. 1975 Progress in the development of a Reynolds stress closure. J. Fluid Mech. 68, 537566.Google Scholar
Leith, C. E. 1971 Atmospheric predictability and two-dimensional turbulence. J. Atmos. Sci. 28, 145161.Google Scholar
Lumley, J. 1975 Von Kármán Institute, Lecture series 76.
Millionshikov, M. 1941 On the theory of homogeneous isotropic turbulence. C.R. Acad. Sci. U.R.S.S. 32, 615.Google Scholar
O'Brien, E. E. & Francis, G. C. 1962 A consequence of the zero fourth cumulant approximation. J. Fluid Mech. 13, 369382.Google Scholar
Ogura, S. A. 1963 A consequence of the zero fourth cumulant approximation in the decay of isotropic turbulence. J. Fluid Mech. 16, 3340.Google Scholar
Orszag, S. A. 1970 Analytical theories of turbulence. J. Fluid Mech. 41, 262386.Google Scholar
Pouquet, A., Lesieur, M., André, J. C. & Basdevant, C. 1975 Evolution of high Reynolds number two-dimensional turbulence. J. Fluid Mech. 72, 305.Google Scholar
Proudman, I. & Reid, W. H. 1954 On the decay of a normally distributed and homogeneous turbulent velocity field. Phil. Trans. Roy. Soc. A 297, 163189.Google Scholar
Rotta, J. C. 1951 Statistische Theorie nichthomogener Turbulenz. 1. Z. Phys. 129, 547572.Google Scholar
Schumann, U. & Herring, J. R. 1976 Axisymmetric homogeneous turbulence: a comparison of direct spectral simulations with the direct-interaction approximation. J. Fluid Mech. 76, 755782.Google Scholar
Sulem, P. L., Frisch, U. & Lesieur, M. 1975 Le ‘test field model’ interprété comme méthode de fermeture des équations de la turbulence. Am. Geophys. 31, 487.Google Scholar