Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T22:27:34.215Z Has data issue: false hasContentIssue false

A spectral model for stably stratified turbulence

Published online by Cambridge University Press:  18 September 2015

Antonio Segalini*
Affiliation:
Linné FLOW Centre, KTH Mechanics, 10044 Stockholm, Sweden
Johan Arnqvist
Affiliation:
Department of Earth Sciences, Meteorology, Uppsala University, 75236 Uppsala, Sweden
*
Email address for correspondence: [email protected]

Abstract

A solution of the inviscid rapid distortion equations for a stratified flow with homogeneous shear is proposed, extending the work of Hanazaki & Hunt (J. Fluid Mech., vol. 507, 2004, pp. 1–42) to the two horizontal velocity components. The analytical solution allows for the determination of the spectral tensor evolution at any given time starting from a known initial condition. By following the same approach as that adopted by Mann (J. Fluid Mech., vol. 273, 1994, pp. 141–168), a model for the spectral velocity tensor in the atmospheric boundary layer is obtained, where the spectral tensor, assumed to be isotropic at the initial time, evolves until the breakup time where the spectral tensor is supposed to achieve its final state observed in the boundary layer. The model predictions are compared with atmospheric measurements obtained over a forested area, giving the opportunity to calibrate the model parameters, and further validation is provided by additional low-roughness data. Characteristic values of the model coefficients and their dependence on the Richardson number are proposed and discussed.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions. Dover.Google Scholar
Arnqvist, J., Segalini, A., Dellwik, E. & Bergström, H. 2015 Wind statistics from a forested landscape. Boundary-Layer Meteorol. 156, 5371.CrossRefGoogle Scholar
Bendat, J. S. & Piersol, A. G. 1986 Random Data, 2nd edn. John Wiley & Sons.Google Scholar
Bender, C. M. & Orszag, S. A. 1999 Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory. Springer.CrossRefGoogle Scholar
Chougule, A.2013 Influence of atmospheric stability on the spatial structure of turbulence. PhD thesis, DTU Wind Energy.Google Scholar
Chougule, A., Mann, J., Kelly, M., Sun, J., Lenschow, D. H. & Patton, E. G. 2012 Vertical cross-spectral phases in neutral atmospheric flow. J. Turbul. 13 (36), 113.CrossRefGoogle Scholar
Chougule, A., Mann, J., Segalini, A. & Dellwik, E. 2015 Spectral tensor parameters for wind turbine load modeling from forested and agricultural landscapes. Wind Energy 18, 469481.CrossRefGoogle Scholar
Goedecke, G. H., Ostashev, V. E., Wilson, K. D. & Auvermann, H. J. 2004 Quasi-wavelet model of von Kármán spectrum of turbulent velocity fluctuations. Boundary-Layer Meteorol. 112, 3356.CrossRefGoogle Scholar
Hanazaki, H. & Hunt, J. C. R. 2004 Structure of unsteady stably stratified turbulence with mean shear. J. Fluid Mech. 507, 142.CrossRefGoogle Scholar
Hunt, J. C. R. & Carruthers, D. J. 1990 Rapid distortion theory and the ‘problems’ of turbulence. J. Fluid Mech. 212, 497532.CrossRefGoogle Scholar
Jefferson, J. L. & Rehmann, C. R. 2014 Rapid distortion theory for mixing efficiency of a flow stratified by one or two scalars. Dyn. Atmos. Oceans 65, 107123.CrossRefGoogle Scholar
Kaimal, J. C. & Finnigan, J. J. 1994 Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press.CrossRefGoogle Scholar
Kaimal, J. C., Wyngaard, J. C., Izumi, Y. & Coté, O. R. 1972 Spectral characteristics of surface-layer turbulence. Q. J. R. Meteorol. Soc. 98, 536589.Google Scholar
Liu, H, Peters, G & Foken, T 2001 New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer. Boundary-Layer Meteorol. 100, 459468.CrossRefGoogle Scholar
Mann, J. 1994 The spatial structure of neutral atmospheric surface-layer turbulence. J. Fluid Mech. 273, 141168.CrossRefGoogle Scholar
Mann, J. 1998 Wind field simulation. Prob. Engng Mech. 13 (4), 269282.CrossRefGoogle Scholar
Miles, J. W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10, 496508.CrossRefGoogle Scholar
Nielsen, M. & Larsen, S. E. 2002 The Influence of Pulse-Firing Delays on Sonic Anemometer Response Characteristics, pp. 139142. American Meteorological Society.Google Scholar
Nilsson, K., Ivanell, S., Hansen, K. S., Mikkelsen, R., Sørensen, J. N., Breton, S.-P. & Henningson, D. 2014 Large-eddy simulations of the Lillgrund wind farm. Wind Energy 18, 449467.CrossRefGoogle Scholar
Ostashev, V. 1997 Acoustics in Moving Inhomogeneous Media. E & FN SPON.Google Scholar
Pope, S. B. 2000 Turbulent Flows, 1st edn. Cambridge University Press.CrossRefGoogle Scholar
Sarmast, S.2014 Numerical study on instability and interaction of wind turbine wakes. PhD thesis, KTH Mechanics.Google Scholar
Smedman, A.-S. & Bergström, H. 1984 Flow characteristics above very low and gently sloping hill. Boundary-Layer Meteorol. 29, 2137.CrossRefGoogle Scholar
Sullivan, P. B., Horst, T. W., Lenschow, D. H., Moeng, C.-H. & Weil, J. C. 2003 Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modelling. J. Fluid Mech. 482, 101139.CrossRefGoogle Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Troldborg, N., Larsen, G. C., Madsen, H. A., Hansen, K. S., Sørensen, J. N. & Mikkelsen, R. 2011 Numerical simulations of wake interaction between two wind turbines at various inflow conditions. Wind Energy 14, 859876.CrossRefGoogle Scholar
Wyngaard, J. C. 2010 Turbulence in the Atmosphere. Cambridge University Press.CrossRefGoogle Scholar