Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T06:08:08.057Z Has data issue: false hasContentIssue false

Spatio-temporal dynamics of turbulent separation bubbles

Published online by Cambridge University Press:  28 November 2019

Wen Wu*
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
Charles Meneveau
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
Rajat Mittal
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
*
Email address for correspondence: [email protected]

Abstract

The spatio-temporal dynamics of separation bubbles induced to form in a fully developed turbulent boundary layer (with Reynolds number based on momentum thickness of the boundary layer of 490) over a flat plate is studied via direct numerical simulations. Two different separation bubbles are examined: one induced by a suction–blowing velocity profile on the top boundary and the other by a suction-only velocity profile. The latter condition allows reattachment to occur without an externally imposed favourable pressure gradient and leads to a separation bubble more representative of those occurring over airfoils and in diffusers. The suction-only separation bubble exhibits a range of clearly distinguishable modes, including a high-frequency mode and a low-frequency ‘breathing’ mode that has been observed in some previous experiments. The high-frequency mode is well characterized by classical frequency scalings for a plane mixing layer and is associated with the formation and shedding of spanwise-oriented vortex rollers. The topology associated with the low-frequency motion is revealed by applying dynamic mode decomposition to the data from the simulations and is shown to be dominated by highly elongated structures in the streamwise direction. The possibility of Görtler instability induced by the streamwise curvature on the upstream end of the separation bubble as the underlying mechanism for these structures and the associated low frequency is explored.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, H. 2017 Reynolds-number dependence of wall-pressure fluctuations in a pressure-induced turbulent separation bubble. J. Fluid Mech. 833, 563598.CrossRefGoogle Scholar
Abe, H. 2019 Direct numerical simulation of a turbulent boundary layer with separation and reattachment over a range of Reynolds numbers. Fluid Dyn. Res. 51, 011409.CrossRefGoogle Scholar
Abe, H., Mizobuchi, Y., Matsuo, Y. & Spalart, P. R. 2012 DNS and modeling of a turbulent boundary layer with separation and reattachment over a range of Reynolds numbers. In CTR Annual Research Briefs, pp. 311322. Center for Turbulence Research.Google Scholar
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Alam, M. & Sandham, N. D. 2000 Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410, 128.CrossRefGoogle Scholar
Alving, A. E. & Fernholz, H. H. 1996 Turbulence measurements around a mild separation bubble and downstream of reattachment. J. Fluid Mech. 322, 297328.CrossRefGoogle Scholar
Asada, K. & Kawai, S. 2018 Large-eddy simulation of airfoil flow near stall condition at Reynolds number 2. 1 × 106. Phys. Fluid. 30, 085103.CrossRefGoogle Scholar
Balakumar, P. 2017 Direct numerical simulation of flows over an NACA-0012 airfoil at low and moderate Reynolds numbers. In 2017 Fluid Dynamics Conference, AIAA AVIATION Forum, pp. AIAA 2017–3978. AIAA AVIATION Forum.Google Scholar
Bippes, H. & Görtler, H. 1972 Dreidimensionale stoerungen in der grenzschicht an einer konkaven wand. Acta Mech. 14, 251267.CrossRefGoogle Scholar
Brown, B. L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775816.CrossRefGoogle Scholar
Chen, K. K., Tu, J. H. & Rowley, C. W. 2012 Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyses. J. Nonlinear Sci. 22, 887915.CrossRefGoogle Scholar
Cherry, N. J., Hillier, R. & Latour, M. E. M. P. 1984 Unsteady measurements in a separated and reattaching flow. J. Fluid Mech. 144, 1346.CrossRefGoogle Scholar
Clemens, N. T. & Narayanaswamy, V. 2014 Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu. Rev. Fluid Mech. 46, 469492.CrossRefGoogle Scholar
Coleman, G. N., Rumsey, C. L. & Spalart, P. R. 2018 Numerical study of turbulent separation bubbles with varying pressure gradient and Reynolds number. J. Fluid Mech. 847, 2870.CrossRefGoogle Scholar
Dandois, J., Garnier, E. & Sagaut, P. 2007 Numerical simulation of active separation control by a synthetic jet. J. Fluid Mech. 574, 2558.CrossRefGoogle Scholar
Dianat, M. & Castro, I. P. 1991 Turbulence in a separated boundary layer. J. Fluid Mech. 226, 91123.CrossRefGoogle Scholar
Don, W. S. & Gottlieb, D. 1990 Spectral simulation of unsteady compressible flow past a circular cylinder. In NASA Contractor Report 182030; ICASE Report 90-29.Google Scholar
Driver, D. M., Seegmiller, H. L. & Marvin, J. G. 1987 Time-dependent behavior of a reattaching shear layer. AIAA J. 25 (7), 914919.CrossRefGoogle Scholar
Durst, F. & Tropea, C. 1982 Flows over two-dimensional backward-facing steps. In Proc. IUTAM Symp., pp. 4152. Springer International Publishing AG.Google Scholar
Dussauge, J.-P., Dupont, P. & Debiève, J.-F. 2006 Unsteadiness in shock wave boundary layer interactions with separation. Aerosp. Sci. Technol. 10, 8591.CrossRefGoogle Scholar
Eaton, J. K. & Johnston, J. P. 1982 Low-frequency unsteadiness of a reattaching turbulent boundary layer. In Proc. 3rd Intl. Symp. Turbul. Shear Flow, pp. 162170. Springer.CrossRefGoogle Scholar
Floryan, J. M. 1991 On the görtler instability of boundary layers. Prog. Aerosp. Sci. 28, 235271.CrossRefGoogle Scholar
Floryan, J. M. & Saric, W. 1982 Stability of görtler vortices in boundary layers. AIAA J. 20, 316324.CrossRefGoogle Scholar
Ganapathisubramani, B., Longmire, E. K. & Marusic, I. 2003 Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 3546.CrossRefGoogle Scholar
Gaster, M.1963 On stability of parallel flows and the behaviour of separation bubbles. PhD thesis, University of London.Google Scholar
Gerich, D. & Eckelmann, H. 1982 Influence of end plates and free ends on the shedding frequency of circular cylinders. J. Fluid Mech. 122, 109121.CrossRefGoogle Scholar
Görtler, H. 1954 On the three-dimensional instability of laminar boundary layer on concave walls. In National Advisory Committee for Aeronautics, Technical Memorandum 1375; Translation of ‘Über eine dreidimensionale Instabilität laminarer Grenzschichten an konkaven Wänden’.’ Ges. d. Wiss. Göttingen, Nachr. a. d. Math., Bd. 2, Nr. 1, 1940.Google Scholar
Hain, R., Kähler, C. J. & Radespiel, R. 2009 Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils. J. Fluid Mech. 630, 129153.CrossRefGoogle Scholar
Hall, P. 1982 On the nonlinear evolution of görtler vortices in non-parallel boundary layers. IMA J. Appl. Maths 29, 173196.CrossRefGoogle Scholar
Hall, S. D., Behnia, C. A. J. F. M. & Morrison, G. L. 2003 Investigation of the secondary corner vortices in a benchmark turbulent backward-facing step using cross-correlation particle imaging velocimetry. Exp. Fluids 35, 139151.CrossRefGoogle Scholar
Hammond, D. A. & Redekopp, L. G. 1998 Local and global instability properties of separation bubbles. Eur. J. Mech. (B/Fluids) 17, 145164.CrossRefGoogle Scholar
Harun, Z., Monty, J. P., Mathis, R. & Marusic, I. 2013 Pressure gradient effects on the large-scale structure of turbulent boundary layers. J. Fluid Mech. 715, 477498.CrossRefGoogle Scholar
Hasan, M. A. Z. 1992 The flow over a backward-facing step under controlled perturbation: laminar separation. J. Fluid Mech. 238, 7396.CrossRefGoogle Scholar
Heenan, F. & Morrison, J. F. 1998 Passive control of pressure fluctuations generated by separated flow. AIAA J. 36 (6), 10141022.CrossRefGoogle Scholar
Hoffmann, P. H., Muck, K. C. & Bradshaw, P. 1985 The effects of concave surface curvature on turbulent boundary layers. J. Fluid Mech. 164, 371403.CrossRefGoogle Scholar
Horton, H. P.1968 Laminar separation in two and three-dimensional incompressible flow. PhD thesis, University of London.Google Scholar
Hudy, L. M. & Naguib, A. 2007 Stochastic estimation of a separated-flow field using wall-pressure-array measurements. Phys. Fluids 19, 024103.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P. A. 1985 Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159, 151168.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Jones, L. E., Sandberg, R. D. & Sandham, N. D. 2008 Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence. J. Fluid Mech. 602, 175207.CrossRefGoogle Scholar
Jones, L. E., Sandberg, R. D. & Sandham, N. D. 2010 Stability and receptivity characteristics of a laminar separation bubble on an aerofoil. J. Fluid Mech. 648, 257296.CrossRefGoogle Scholar
Jones, M. 1934 Stalling. J. R. Aero. Soc. 38 (285), 753770.CrossRefGoogle Scholar
Kaltenbach, H. J., Fatica, M., Mittal, R., Lund, T. S. & Moin, P. 1999 Study of flow in a planar asymmetric diffuser using large-eddy simulation. J. Fluid Mech. 390, 151185.CrossRefGoogle Scholar
Kim, D.-H., Yang, J.-H., Chang, J.-W. & Chung, J. 2009 Boundary layer and near-wake measurements of NACA 0012 airfoil at low Reynolds numbers. In 47th AIAA Aerospace Sciences Meeting, pp. AIAA 2009–1472. AIAA AVIATION Forum.Google Scholar
Kiya, M. & Sasaki, K. 1985 Structure of large-scale vortices and unsteady reverse flow in the reattaching zone of a turbulent separation bubble. J. Fluid Mech. 154, 463491.CrossRefGoogle Scholar
Kotapati, R., Mittal, R., Marxen, O., Ham, F., You, D. & Louis, N. C. 2010 Nonlinear dynamics and synthetic-jet-based control of a canonical separated flow. J. Fluid Mech. 654, 6597.CrossRefGoogle Scholar
Lee, J.-H. & Sung, H. J. 2009 Structures in turbulent boundary layers subjected to adverse pressure gradients. J. Fluid Mech. 639, 101131.CrossRefGoogle Scholar
Li, F. & Malik, M. R. 1995 Fundamental and subharmonic secondary instabilities of görtler vortices. J. Fluid Mech. 297, 77100.CrossRefGoogle Scholar
Liepmann, H. W. & Laufer, J. 1947 Investigation of free turbulent mixing. In NACA Tech. Note, no. 1257.Google Scholar
Loginov, M. S., Adams, N. A. & Zheltovodov, A. A. 2006 Large-eddy simulation of shock-wave/turbulent-boundary-layer interaction. J. Fluid Mech. 565, 135169.CrossRefGoogle Scholar
Luchini, P. & Bottaro, A. 1998 Görtler vortices: a backward-in-time approach to the receptivity problem. J. Fluid Mech. 363, 123.CrossRefGoogle Scholar
Lund, T., Wu, X. & Squires, K. 1998 Generation of turbulent inflow data for spatially- developing boundary layer simulations. J. Comput. Phys. 140, 233258.CrossRefGoogle Scholar
Marquillie, M. & Ehrenstein, U. 2003 On the onset of nonlinear oscillations in a separating boundary-layer flow. J. Fluid Mech. 490, 168188.CrossRefGoogle Scholar
Marxen, O. & Henningson, D. S. 2010 The effect of small-amplitude convective disturbances on the size and bursting of a laminar separation bubble. J. Fluid Mech. 671, 133.CrossRefGoogle Scholar
Marxen, O. & Rist, U. 2010 Mean flow deformation in a laminar separation bubble: separation and stability characteristics. J. Fluid Mech. 660, 3754.CrossRefGoogle Scholar
Marxen, O., Rist, U. & Sagner, W. 2003 A combined experimental/numerical study of unsteady phenomena in a laminar separation bubble. Flow Turbul. Comb. 71, 133146.CrossRefGoogle Scholar
McGuineess, M.1978 Flow with a separation bubble – steady and unsteady aspects. PhD thesis, Cambridge University.Google Scholar
Michelis, T., Yarusevych, S. & Kotsnois, M. 2018 On the origin of spanwise vortex deformations in laminar separation bubbles. J. Fluid Mech. 841, 81108.CrossRefGoogle Scholar
Mittal, R., Dong, H., Bozkurttas, M., Najjar, F., Vargas, A. & von Loebbecke, A. 2008 A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227, 48254852.CrossRefGoogle ScholarPubMed
Mohammed-Taifour, A. & Weiss, J. 2016 Unsteadiness in a large turbulent separation bubble. J. Fluid Mech. 799, 383412.CrossRefGoogle Scholar
Morgan, B., Larsson, J., Kawai, S. & Lele, S. K. 2011 Improving low-frequency characteristics of recycling/rescaling inflow turbulence generation. AIAA J. 49, 582597.CrossRefGoogle Scholar
Na, Y. & Moin, P. 1998a Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 374, 379405.CrossRefGoogle Scholar
Na, Y. & Moin, P. 1998b The structure of wall-pressure fluctuations in turbulent boundary layers with adverse pressure gradient and separation. J. Fluid Mech. 377, 347373.CrossRefGoogle Scholar
Nadge, P. M. & Govardhan, R. N. 2014 High Reynolds number flow over a backward-facing step: structure of the mean separation bubble. Exp. Fluids 55, 1657.CrossRefGoogle Scholar
Najjar, F. M. & Balachandar, S. 1998 Low-frequency unsteadiness in the wake of a normal flat plate. J. Fluid Mech. 370, 101147.CrossRefGoogle Scholar
Owen, P. R. & Klanfer, L. 1953 On the laminar boundary layer separation from the leading edge of a thin aerofoil. In ARC Conf. Proc., p. CP 220.Google Scholar
Pantano, C. & Sarkar, S. 2002 A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech. 451, 329371.CrossRefGoogle Scholar
Patrick, W. P. 1987 Flowfield measurements in a separated and reattached flat plate turbulent boundary layer. In NASA Tech. Rep., p. 4052.Google Scholar
Pauley, L. L., Moin, P. & Reynolds, W. C. 1990 The structure of two-dimensional separation. J. Fluid Mech. 220, 397411.CrossRefGoogle Scholar
Perry, A. E. & Fairlie, B. D. 1975 A study of turbulent boundary-layer separation and reattachment. J. Fluid Mech. 69, 657672.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Priebe, S., Tu, J. H., Rowley, C. W. & Martín, M. P. 2016 Low-frequency dynamics in a shock-induced separated flow. J. Fluid Mech. 807, 441477.CrossRefGoogle Scholar
Rinoie, K. & Takemura, N. 2004 Oscillating behaviour of laminar separation bubble formed on an aerofoil near stall. Aeronaut. J. 108, 153163.CrossRefGoogle Scholar
Rist, U. & Maucher, U. 2002 Investigations of time-growing instabilities in laminar separation bubbles. Eur. J. Mech. (B/Fluids) 21, 495509.CrossRefGoogle Scholar
Sayadi, T., Schmid, P. J., Nichols, J. W. & Moin, P. 2014 Reduced-order representation of near-wall structures in the late transitional boundary layer. J. Fluid Mech. 748, 278301.CrossRefGoogle Scholar
Schlatter, P. & Örlü, R. 2010 Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116126.CrossRefGoogle Scholar
Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.CrossRefGoogle Scholar
Schmid, P. J. & Henningson, D. S. 2012 Stability and Transition in Shear Flows, vol. 142. Springer Science & Business Media.Google Scholar
Seo, J. H., Cadieux, F., Mittal, R., Deem, E. & Louis, N. C. 2018 Effect of synthetic jet modulation schemes on the reduction of a laminar separation bubble. Phys. Rev. Fluids 3, 033901.CrossRefGoogle Scholar
Settles, G. S., Fitzpatrick, T. J. & Bogdonoff, S. M. 1979 Detailed study of attached and separated compression corner flowfields in high Reynolds number supersonic flow. AIAA J. 16, 579585.CrossRefGoogle Scholar
Skote, M. & Hanningson, D. 2002 Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 471, 107136.CrossRefGoogle Scholar
Skote, M., Hanningson, D. & Henkes, R. 1998 Direct numerical simulation of self-similar turbulent boundary layers in adverse pressure gradients. Flow Turbul. Combust. 60, 4785.CrossRefGoogle Scholar
Smith, A. M. O. 1955 On the growth of Taylor–Görtler vortices along highly concave wall. Q. Appl. Mech. 13, 233262.Google Scholar
Smith, C. R. & Walker, J. D. A. 1989 Three Dimensional Vortex Interactions in Turbulent Boundary Layers, pp. 196. Lehigh University, Department of Mechanical Engineering and Mechanics.Google Scholar
Smits, A. J. & Dussauge, J.-P. 2006 Turbulent Shear Layers in Supersonic Flow, 2nd edn. Springer.Google Scholar
Song, S., DeGraaff, D. B. & Eaton, J. K. 2000 Experimental study of a separating, reattaching, and redeveloping flow over a smoothly contoured ramp. Intl J. Heat Fluid Flow 21, 512519.CrossRefGoogle Scholar
Spalart, P. R. & Coleman, G. N. 1997 Numerical study of a separation bubble with heat transfer. Eur. J. Mech. (B/Fluids) 16, 169189.Google Scholar
Spalart, P. R., Strelets, M. & Travin, A. 2006 Direct numerical simulation of large-eddy-break-up devices in a boundary layer. Intl J. Heat Fluid Flow 27, 902910.CrossRefGoogle Scholar
Spalart, P. R. & Strelets, M. KH. 2000 Mechanisms of transition and heat transfer in a separation bubble. J. Fluid Mech. 403, 329349.CrossRefGoogle Scholar
Spazzini, P. G., Luso, G., Onorato, M., Zurlo, N. & Cicca, G. M. D. 2001 Unsteady behavior of back-facing step flow. Exp. Fluids 30, 551561.CrossRefGoogle Scholar
Strykowski, P. J. & Niccum, D. L. 1991 The stability of countercurrent mixing layers in circular jets. J. Fluid Mech. 227, 309343.CrossRefGoogle Scholar
Swearingen, J. D. & Blackwelder, R. F. 1983 Parameters controlling the spacing of streamwise vortices on a concave wall. AIAA J. 83, 0380.Google Scholar
Tafti, D. K. & Vanka, S. P. 1991 A three-dimensional numerical study of flow separation and reattachment on a blunt plate. Phys. Fluids 3, 2887.CrossRefGoogle Scholar
Tani, I. 1962 Production of longitudinal vortices in the boundary layer along a concave wall. J. Geophys. Res. 67, 30753080.CrossRefGoogle Scholar
Tani, T. 1964 Low-speed flows involving bubble separations. Prog. Aerosp. Sci. 5, 70103.CrossRefGoogle Scholar
Tenaud, C., Podvin, B., Fraigneau, Y. & Daru, V. 2016 On wall pressure fluctuations and their coupling with vortex dynamics in a separated–reattached turbulent flow over a blunt flat plate. Intl J. Heat Fluid Flow 61, 730748.CrossRefGoogle Scholar
Touber, E. & Sandham, N. D. 2009 Comparison of three large-eddy simulations of shock-induced turbulent separation bubbles. Shock Waves 19, 469478.CrossRefGoogle Scholar
Troutt, T. R., Scheelke, B. & Norman, T. R. 1984 Organized structures in a reattaching separated flow field. J. Fluid Mech. 143, 413427.CrossRefGoogle Scholar
Wee, D., Yi, T., Annaswamy, A. & Ghoniem, A. F. 2004 Self-sustained oscillations and vortex shedding in backward-facing step flows: simulation and linear instability analysis. Phys. Fluids 16, 3361.CrossRefGoogle Scholar
Weiss, J., Mohammed-Taifour, A. & Schwaab, Q. 2015 Unsteady behavior of a pressure-induced turbulent separation bubble. AIAA J. 53, 26342645.CrossRefGoogle Scholar
Wu, S. J., Miau, J. J., Hu, C. C. & Chou, J. H. 2005 On low-frequency modulations and three-dimensionality in vortex shedding behind a normal plate. J. Fluid Mech. 526, 117146.CrossRefGoogle Scholar
Wu, W., Meneveau, C. & Mittal, R. 2019 Dynamics of natural and perturbed turbulent separation bubbles. In Eleventh International Symposium on Turbulence and Shear Flow Phenomena (TSFP11), Southampton, UK, 30 July–2 August, 2019.Google Scholar
Wu, W. & Piomelli, U. 2018 Effects of surface roughness on a separating turbulent boundary layer. J. Fluid Mech. 841, 552580.CrossRefGoogle Scholar
Wu, W., Seo, J.-H., Meneveau, C. & Mittal, R. 2018 Response of a laminar separation bubble to forcing with zero-net mass flux jets. In Proc. 2018 Flow Control Conference, AIAA AVIATION Forum, (AIAA 2018-4018).Google Scholar
Wu, X., Moin, P., Wallace, J. M., Skarda, J., Lozano-Duran, A. & Hickey, J.-P. 2017 Transitional-turbulent spots and turbulent-turbulent spots in boundary layers. In Proceedings of National Academy of Sciences, USA, p. 1704671114. PNAS.Google Scholar