Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T17:30:55.991Z Has data issue: false hasContentIssue false

Spatial evolution of the kurtosis of steep unidirectional random waves

Published online by Cambridge University Press:  02 December 2020

Tianning Tang
Affiliation:
Department of Engineering Science, University of Oxford, OxfordOX1 3PJ, UK
Wentao Xu
Affiliation:
School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China
Dylan Barratt
Affiliation:
Department of Engineering Science, University of Oxford, OxfordOX1 3PJ, UK
H. B. Bingham
Affiliation:
Department of Mechanical Engineering, Technical University of Denmark, LyngbyDK-2800, Denmark
Y. Li*
Affiliation:
School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China
P. H. Taylor
Affiliation:
Department of Engineering Science, University of Oxford, OxfordOX1 3PJ, UK Faculty of Engineering and Mathematical Sciences, University of Western Australia, Crawley, WA6009, Australia
T. S. van den Bremer
Affiliation:
Department of Engineering Science, University of Oxford, OxfordOX1 3PJ, UK
T. A. A. Adcock
Affiliation:
Department of Engineering Science, University of Oxford, OxfordOX1 3PJ, UK
*
Email address for correspondence: [email protected]

Abstract

We study the evolution of unidirectional water waves from a randomly forced input condition with uncorrelated Fourier components. We examine the kurtosis of the linearised free surface as a convenient proxy for the probability of a rogue wave. We repeat the laboratory experiments of Onorato et al. (Phys. Rev. E, vol. 70, 2004, 067302), both experimentally and numerically, and extend the parameter space in our numerical simulations. We consider numerical simulations based on the modified nonlinear Schrödinger equation and the fully nonlinear water wave equations, which are in good agreement. For low steepness, existing analytical models based on the nonlinear Schrödinger equation (NLS) are found to be accurate. For cases which are steep or have very narrow bandwidths, these analytical models over-predict the rate at which excess kurtosis develops. In these steep cases, the kurtosis in both our experiments and numerical simulations peaks before returning to an equilibrium level. Such transient maxima are not predicted by NLS-based analytical models. Above a certain threshold of steepness, the steady-state value of kurtosis is primarily dependent on the spectral bandwidth. We also examine how the average shape of extreme events is modified by nonlinearity over the evolution distance, showing significant asymmetry during the initial evolution, which is greatly reduced once the spectrum has reached equilibrium. The locations of the maxima in asymmetry coincide approximately with the locations of the maxima in kurtosis.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adcock, T. A. A. & Taylor, P. H. 2009 Focusing of unidirectional wave groups on deep water: an approximate nonlinear Schrödinger equation-based model. Proc. R. Soc. Lond. A 465 (2110), 30833102.Google Scholar
Adcock, T. A. A., Taylor, P. H. & Draper, S. 2015 Nonlinear dynamics of wave-groups in random seas: unexpected walls of water in the open ocean. Proc. R. Soc. Lond. A 471 (2184), 20150660.Google Scholar
Annenkov, S. Y. & Shrira, V. I. 2006 Role of non-resonant interactions in the evolution of nonlinear random water wave fields. J. Fluid Mech. 561, 181207.CrossRefGoogle Scholar
Annenkov, S. Y. & Shrira, V. I. 2009 Evolution of kurtosis for wind waves. Geophys. Res. Lett. 36 (13), L13603.CrossRefGoogle Scholar
Annenkov, S. Y. & Shrira, V. I. 2018 Spectral evolution of weakly nonlinear random waves: kinetic description versus direct numerical simulations. J. Fluid Mech. 844, 766795.CrossRefGoogle Scholar
Baldock, T. E., Swan, C. & Taylor, P. H. 1996 A laboratory study of nonlinear surface waves on water. Phil. Trans. R. Soc. Lond. A 354 (1707), 649676.Google Scholar
Barratt, D., Bingham, H. B. & Adcock, T. A. A. 2020 Nonlinear evolution of a steep, focusing wave group in deep water simulated with OceanWave3D. J. Offshore Mech. Arctic Engng 142 (2), 021201.CrossRefGoogle Scholar
Benjamin, T. B. & Feir, J. E. 1967 The disintegration of wave trains on deep water. Part 1. Theory. J. Fluid Mech. 27 (3), 417430.CrossRefGoogle Scholar
Boccotti, P. 1983 Some new results on statistical properties of wind waves. Appl. Ocean Res. 5 (3), 134140.Google Scholar
Boccotti, P. 1989 On mechanics of irregular gravity waves. Atti Accad. Naz. Lincei VIII (19), 111170.Google Scholar
Boccotti, P. 2000 Wave Mechanics for Ocean Engineering. Elsevier.Google Scholar
Chabchoub, A. & Grimshaw, R. 2016 The hydrodynamic nonlinear Schrödinger equation: space and time. Fluids 1 (3), 23.CrossRefGoogle Scholar
Dematteis, G., Grafke, T., Onorato, M. & Vanden-Eijnden, E. 2019 Experimental evidence of hydrodynamic instantons: the universal route to rogue waves. Phys. Rev. X 9 (4), 041057.Google Scholar
Dudley, J. M., Genty, G., Mussot, A., Chabchoub, A. & Dias, F. 2019 Rogue waves and analogies in optics and oceanography. Nat. Rev. Phys. 1 (11), 675689.CrossRefGoogle Scholar
Dyachenko, A. I. & Zakharov, V. E. 2011 Compact equation for gravity waves on deep water. JETP Lett. 93 (12), 701.CrossRefGoogle Scholar
Dysthe, K. B. 1979 Note on a modification to the nonlinear Schrödinger equation for application to deep-water waves. Proc. R. Soc. Lond. A 369, 105114.Google Scholar
Engsig-Karup, A. P., Bingham, H. B. & Lindberg, O. 2009 An efficient flexible-order model for 3D nonlinear water waves. J. Comput. Phys. 228 (6), 21002118.CrossRefGoogle Scholar
Fedele, F. 2014 On certain properties of the compact Zakharov equation. J. Fluid Mech. 748, 692711.CrossRefGoogle Scholar
Fedele, F. 2015 On the kurtosis of deep-water gravity waves. J. Fluid Mech. 782, 2536.CrossRefGoogle Scholar
Fedele, F., Benetazzo, A., Gallego, G., Shih, P. C., Yezzi, A., Barbariol, F. & Ardhuin, F. 2013 Space–time measurements of oceanic sea states. Ocean Model. 70, 103115.CrossRefGoogle Scholar
Fedele, F., Cherneva, Z., Tayfun, M. A. & Guedes Soares, C. 2010 Nonlinear Schrödinger invariants and wave statistics. Phys. Fluids 22 (3), 036601.CrossRefGoogle Scholar
Fedele, F. & Dutykh, D. 2012 Special solutions to a compact equation for deep-water gravity waves. J. Fluid Mech. 712, 646660.CrossRefGoogle Scholar
Goda, Y. 2000 Random Seas and Design of Maritime Structures. World Scientific.Google Scholar
Hasselmann, K. 1962 On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory. J. Fluid Mech. 12, 481.CrossRefGoogle Scholar
Janssen, P. A. E. M. 2003 Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 33 (4), 863884.2.0.CO;2>CrossRefGoogle Scholar
Janssen, P. A. E. M. & Bidlot, J. R. 2009 On the extension of the freak wave warning system and its verification. ECMWF Tech. Mem. 588. ECMWF.Google Scholar
Janssen, P. A. E. M. & Janssen, A. J. E. M. 2019 Asymptotics for the long-time evolution of kurtosis of narrow-band ocean waves. J. Fluid Mech. 859, 790818.CrossRefGoogle Scholar
Kit, E. & Shemer, L. 2002 Spatial versions of the Zakharov and Dysthe evolution equations for deep-water gravity waves. J. Fluid Mech. 450, 201205.CrossRefGoogle Scholar
Kokorina, A. & Slunyaev, A. 2019 Lifetimes of rogue wave events in direct numerical simulations of deep-water irregular sea waves. Fluids 4 (2), 70.CrossRefGoogle Scholar
Lindgren, G. 1970 Some properties of a normal process near a local maximum. Ann. Math. Statist. 41 (6), 18701883.CrossRefGoogle Scholar
Lo, E. & Mei, C. C. 1985 A numerical study of water-wave modulation based on a higher-order nonlinear Schrödinger equation. J. Fluid Mech. 150, 395416.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1952 On the statistical distribution of the height of sea waves. J. Mar. Res. 11, 245266.Google Scholar
Mori, N. & Janssen, P. A. E. M. 2006 On kurtosis and occurrence probability of freak waves. J. Phys. Oceanogr. 36 (7), 14711483.CrossRefGoogle Scholar
Mori, N., Onorato, M. & Janssen, P. A. E. M. 2011 On the estimation of the kurtosis in directional sea states for freak wave forecasting. J. Phys. Oceanogr. 41, 14841497.CrossRefGoogle Scholar
Mori, N., Onorato, M., Janssen, P. A. E. M., Osborne, A. R. & Serio, M. 2007 On the extreme statistics of long-crested deep water waves: theory and experiments. J. Geophys. Res. 112 (C9), C09011.Google Scholar
Onorato, M., Cavaleri, L., Fouques, S., Gramstad, O., Janssen, P. E. A. M., Monbaliu, J., Osborne, A. R., Pakozdi, C., Serio, M., Toffoli, A. et al. 2009 Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a three-dimensional wave basin. J. Fluid Mech. 627, 235257.CrossRefGoogle Scholar
Onorato, M., Osborne, A. R., Serio, M. & Cavaleri, L. 2005 Modulational instability and non-Gaussian statistics in experimental random water-wave trains. Phys. Fluids 17, 078101.Google Scholar
Onorato, M., Osborne, A. R., Serio, M., Cavaleri, L., Brandini, C. & Stansberg, C. T. 2004 Observation of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments. Phys. Rev. E 70 (6), 067302.CrossRefGoogle ScholarPubMed
Onorato, M., Osborne, A. R., Serio, M., Cavaleri, L., Brandini, C. & Stansberg, C. T. 2006 Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves. Eur. J. Mech. B/Fluids 25 (5), 586601.CrossRefGoogle Scholar
Onorato, M., Proment, D., El, G., Randoux, S. & Suret, P. 2016 On the origin of heavy-tail statistics in equations of the nonlinear Schrödinger type. Phys. Lett. A 380 (39), 31733177.CrossRefGoogle Scholar
Serio, M., Onorato, M., Osborne, A. R. & Janssen, P. A. E. M. 2005 On the computation of the Benjamin-Feir Index. Nuovo Cimento 28 (6), 893903.Google Scholar
Shemer, L., Jiao, H., Kit, E. & Agnon, A. 2001 Evolution of a nonlinear wave field along a tank: experiments and numerical simulations based on the spatial Zakharov equation. J. Fluid Mech. 427, 107129.CrossRefGoogle Scholar
Shemer, L. & Sergeeva, A. 2009 An experimental study of spatial evolution of statistical parameters in a unidirectional narrow-banded random wavefield. J. Geophys. Res. 114 (C1), C01015.Google Scholar
Shemer, L., Sergeeva, A. & Liberzon, D. 2010 a Effect of the initial spectrum on the spatial evolution of statistics of unidirectional nonlinear random waves. J. Geophys. Res. 115 (C12), C12039.CrossRefGoogle Scholar
Shemer, L., Sergeeva, A. & Slunyaev, A. 2010 b Applicability of envelope model equations for simulation of narrow-spectrum unidirectional random wave field evolution: experimental validation. Phys. Fluids 22 (1), 016601.CrossRefGoogle Scholar
Slunyaev, A. V. & Sergeeva, A. V. 2012 Stochastic simulation of unidirectional intense waves in deep water applied to rogue waves. JETP Lett. 94 (10), 779786.CrossRefGoogle Scholar
Tang, T., Tromans, P. S. & Adcock, T. A. A. 2019 Field measurement of nonlinear changes to large gravity wave groups. J. Fluid Mech. 873, 11581178.CrossRefGoogle Scholar
Tayfun, M. A. 1980 Narrow-band nonlinear sea waves. J. Geophys. Res. 85 (C3), 15481552.CrossRefGoogle Scholar
Tayfun, M. A. & Fedele, F. 2007 Wave-height distributions and nonlinear effects. Ocean Engng 34 (11–12), 16311649.CrossRefGoogle Scholar
Toffoli, A., Gramstad, O., Trulsen, K., Monbaliu, J, Bitner-Gregersen, E. & Onorato, M. 2010 Evolution of weakly nonlinear random directional waves: laboratory experiments and numerical simulations. J. Fluid Mech. 664, 313336.CrossRefGoogle Scholar
Tromans, P. S, Anaturk, A. R. & Hagemeijer, P. 1991 A new model for the kinematics of large ocean waves-application as a design wave. In 1st International Offshore and Polar Eng. Conference. International Society of Offshore and Polar Engineers.Google Scholar
Trulsen, K., Kliakhandler, I., Dysthe, K. B. & Velarde, M. G. 2000 On weakly nonlinear modulation of waves on deep water. Phys. Fluids 12 (10), 24322437.CrossRefGoogle Scholar
Xiao, W., Liu, Y., Wu, G. & Yue, D. K. P. 2013 Rogue wave occurrence and dynamics by direct simulations of nonlinear wave-field evolution. J. Fluid Mech. 720, 357392.CrossRefGoogle Scholar
Zavadsky, A., Benetazzo, A. & Shemer, L. 2017 On the two-dimensional structure of short gravity waves in a wind wave tank. Phys. Fluids 29, 016601.CrossRefGoogle Scholar
Zhang, H. D., Guedes Soares, C., Chalikov, D. & Toffoli, A. 2016 Modeling the spatial evolutions of nonlinear unidirectional surface gravity waves with fully nonlinear numerical method. Ocean Engng 125, 6069.Google Scholar
Zhang, H. D., Guedes Soares, C. & Onorato, M. 2014 Modelling of the spatial evolution of extreme laboratory wave heights with the nonlinear Schrödinger and Dysthe equations. Ocean Engng 89, 19.CrossRefGoogle Scholar