Hostname: page-component-6bf8c574d5-nvqbz Total loading time: 0 Render date: 2025-03-09T16:41:15.906Z Has data issue: false hasContentIssue false

Spatial distribution of inertial particles in turbulent Taylor–Couette flow

Published online by Cambridge University Press:  04 March 2025

Hao Jiang
Affiliation:
Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, PR China
Zhi-Ming Lu*
Affiliation:
Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, PR China Shanghai Institute of Aircraft Mechanics and Control, Zhangwu Road, Shanghai 200092, PR China
Bo-Fu Wang
Affiliation:
Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, PR China
Xiao-Hui Meng
Affiliation:
Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, PR China
Jie Shen
Affiliation:
Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Center for Complex Flows and Soft Matter Research, and Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
Kai Leong Chong*
Affiliation:
Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, PR China Shanghai Institute of Aircraft Mechanics and Control, Zhangwu Road, Shanghai 200092, PR China
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

This study investigates the spatial distribution of inertial particles in turbulent Taylor–Couette flow. Direct numerical simulations are performed using a one-way coupled Eulerian–Lagrangian approach, with a fixed inner-wall Reynolds number of 2500 for the carrier flow, while the particle Stokes number ($St$) varies from 0.034 to 1 for the dispersed phase. We first examine the issue of preferential concentration of particles near the outer-wall region. Employing two-dimensional Voronoï analysis, we observe a pronounced particle clustering with increasing $St$, particularly evident in regions of low fluid velocity. Additionally, we investigate the concentration balance equation, inspired by the work of Johnson et al. (J. Fluid Mech., vol. 883, 2020, A27), to examine the particle radial distribution. We discern the predominant sources of influence, namely biased sampling, turbophoresis and centrifugal effects. Across all cases, centrifugal force emerges as the primary driver, causing particle migration toward the outer wall. Biased sampling predominantly affects smaller inertial particles, driving them toward the inner wall due to sampling within Taylor rolls with inward radial velocity. Conversely, turbophoresis primarily impacts larger inertial particles, inducing migration towards both walls where turbulent intensity is weaker compared with the bulk. With the revealed physics, our work provides a basis for predicting and controlling particle movement and distribution in industrial applications.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamson, J. 1975 Collision rates of small particles in a vigorously turbulent fluid. Chem. Engng Sci. 30 (11), 13711379.CrossRefGoogle Scholar
Apte, S.V., Mahesh, K., Moin, P. & Oefelein, J.C. 2003 Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor. Intl J. Multiphase Flow 29 (8), 13111331.CrossRefGoogle Scholar
Assen, M.P., Ng, C.S., Will, J.B., Stevens, R.J., Lohse, D. & Verzicco, R. 2022 Strong alignment of prolate ellipsoids in Taylor–Couette flow. J. Fluid Mech. 935, A7.CrossRefGoogle Scholar
Bakhuis, D., Mathai, V., Verschoof, R.A., Ezeta, R., Lohse, D., Huisman, S.G. & Sun, C. 2019 Statistics of rigid fibers in strongly sheared turbulence. Phys. Rev. Fluids 4 (7), 072301.CrossRefGoogle Scholar
Bakhuis, D., Verschoof, R.A., Mathai, V., Huisman, S.G., Lohse, D. & Sun, C. 2018 Finite-sized rigid spheres in turbulent Taylor–Couette flow: effect on the overall drag. J. Fluid Mech. 850, 246261.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Baroudi, L., Majji, M.V. & Morris, J.F. 2020 Effect of inertial migration of particles on flow transitions of a suspension Taylor–Couette flow. Phys. Rev. Fluids 5 (11), 114303.CrossRefGoogle Scholar
van den Berg, T.H., Luther, S., Lathrop, D.P. & Lohse, D. 2005 Drag reduction in bubbly Taylor–Couette turbulence. Phys. Rev. Lett. 94 (4), 044501.CrossRefGoogle ScholarPubMed
Bernardini, M. 2014 Reynolds number scaling of inertial particle statistics in turbulent channel flows. J. Fluid Mech. 758, R1.CrossRefGoogle Scholar
Bragg, A.D. & Collins, L.R. 2014 New insights from comparing statistical theories for inertial particles in turbulence: I. Spatial distribution of particles. New J. Phys. 16 (5), 055013.CrossRefGoogle Scholar
Bragg, A.D., Ireland, P.J. & Collins, L.R. 2015 a Mechanisms for the clustering of inertial particles in the inertial range of isotropic turbulence. Phys. Rev. E 92 (2), 023029.CrossRefGoogle ScholarPubMed
Bragg, A.D., Ireland, P.J. & Collins, L.R. 2015 b On the relationship between the non-local clustering mechanism and preferential concentration. J. Fluid Mech. 780, 327343.CrossRefGoogle Scholar
Brandt, L. & Coletti, F. 2022 Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54 (1), 159189.CrossRefGoogle Scholar
Brauckmann, H.J. & Eckhardt, B. 2017 Marginally stable and turbulent boundary layers in low-curvature Taylor–Couette flow. J. Fluid Mech. 815, 149168.CrossRefGoogle Scholar
Caporaloni, M., Tampieri, F., Trombetti, F. & Vittori, O. 1975 Transfer of particles in nonisotropic air turbulence. J. Atmos. Sci. 32 (3), 565568.2.0.CO;2>CrossRefGoogle Scholar
Couette, M. 1890 Études sur le frottement des liquides. Ann. Chim. Phys. 6 (21), 433510.Google Scholar
Curran, S.J. & Black, R.A. 2005 Oxygen transport and cell viability in an annular flow bioreactor: comparison of laminar Couette and Taylor-vortex flow regimes. Biotechnol. Bioengng 89 (7), 766774.CrossRefGoogle Scholar
Dash, A., Anantharaman, A. & Poelma, C. 2020 Particle-laden Taylor–Couette flows: higher-order transitions and evidence for azimuthally localized wavy vortices. J. Fluid Mech. 903, A20.CrossRefGoogle Scholar
Di Renzo, M. & Urzay, J. 2018 Aerodynamic generation of electric fields in turbulence laden with charged inertial particles. Nat. Commun. 9 (1), 1676.CrossRefGoogle ScholarPubMed
Eaton, J.K. & Fessler, J. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.CrossRefGoogle Scholar
Elghobashi, S. 1991 Particle-laden turbulent flows: direct simulation and closure models. Appl. Sci. Res. 48, 301314.CrossRefGoogle Scholar
Elghobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52, 309329.CrossRefGoogle Scholar
Elghobashi, S. 2019 Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu. Rev. Fluid Mech. 51 (1), 217244.CrossRefGoogle Scholar
Elghobashi, S., Balachandar, S. & Prosperetti, A. 2006 An updated classification map of particle-laden turbulent flows. Fluid Mech. Applics. 81, 3.Google Scholar
Falkovich, G., Fouxon, A. & Stepanov, M. 2002 Acceleration of rain initiation by cloud turbulence. Nature 419 (6903), 151154.CrossRefGoogle ScholarPubMed
Fang, Z., Mammoli, A.A., Brady, J.F., Ingber, M.S., Mondy, L.A. & Graham, A.L. 2002 Flow-aligned tensor models for suspension flows. Intl J. Multiphase Flow 28 (1), 137166.CrossRefGoogle Scholar
Ferenc, J.-S. & Néda, Z. 2007 On the size distribution of poisson Voronoï cells. Physica A 385 (2), 518526.CrossRefGoogle Scholar
Froitzheim, A., Ezeta, R., Huisman, S.G., Merbold, S., Sun, C., Lohse, D. & Egbers, C. 2019 Statistics, plumes and azimuthally travelling waves in ultimate Taylor–Couette turbulent vortices. J. Fluid Mech. 876, 733765.CrossRefGoogle Scholar
Gatignol, R. 1983 The Faxén formulae for a rigid particle in an unsteady non-uniform Stokes flow. J. Méc. 9 (2), 143160.Google Scholar
Goto, S. & Vassilicos, J. 2008 Sweep-stick mechanism of heavy particle clustering in fluid turbulence. Phys. Rev. Lett. 100 (5), 054503.CrossRefGoogle ScholarPubMed
Grossmann, S., Lohse, D. & Sun, C. 2016 High-Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48, 5380.CrossRefGoogle Scholar
Guha, A. 1997 A unified Eulerian theory of turbulent deposition to smooth and rough surfaces. J. Aerosp. Sci. 28 (8), 15171537.CrossRefGoogle Scholar
Guha, A. 2008 Transport and deposition of particles in turbulent and laminar flow. Annu. Rev. Fluid Mech. 40 (1), 311341.CrossRefGoogle Scholar
Guo, X.-L., Wu, J.-Z., Wang, B.-F., Zhou, Q. & Chong, K.L. 2023 Flow structure transition in thermal vibrational convection. J. Fluid Mech. 974, A29.CrossRefGoogle Scholar
Gustavsson, K. & Mehlig, B. 2016 Statistical models for spatial patterns of heavy particles in turbulence. Adv. Phys. 65 (1), 157.CrossRefGoogle Scholar
Hamede, M.H., Merbold, S. & Egbers, C. 2023 Transition to the ultimate turbulent regime in a very wide gap Taylor–Couette flow ($\eta = 0.1$) with a stationary outer cylinder. Europhys. Lett. 143 (2), 23001.CrossRefGoogle Scholar
Huisman, S.G., Scharnowski, S., Cierpka, C., Kähler, C.J., Lohse, D. & Sun, C. 2013 Logarithmic boundary layers in strong Taylor–Couette turbulence. Phys. Rev. Lett. 110 (26), 264501.CrossRefGoogle ScholarPubMed
Johnson, P.L., Bassenne, M. & Moin, P. 2020 Turbophoresis of small inertial particles: theoretical considerations and application to wall-modelled large-eddy simulations. J. Fluid Mech. 883, A27.CrossRefGoogle Scholar
Kang, C. & Mirbod, P. 2021 Flow instability and transitions in Taylor–Couette flow of a semidilute non-colloidal suspension. J. Fluid Mech. 916, A12.CrossRefGoogle Scholar
Kolehmainen, J., Ozel, A., Boyce, C.M. & Sundaresan, S. 2016 A hybrid approach to computing electrostatic forces in fluidized beds of charged particles. AIChE J. 62 (7), 22822295.CrossRefGoogle Scholar
Koschmieder, E.L. 1993 Bénard Cells and Taylor Vortices. Cambridge University Press.Google Scholar
Li, H., Ku, X.-K. & Lin, J.-Z. 2020 Eulerian–Lagrangian simulation of inertial migration of particles in circular Couette flow. Phys. Fluids 32 (7), 073308.Google Scholar
Majji, M.V. & Morris, J.F. 2018 Inertial migration of particles in Taylor–Couette flows. Phys. Fluids 30 (3), 033303.CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.CrossRefGoogle Scholar
Marchioli, C., Soldati, A., Kuerten, J., Arcen, B., Taniere, A., Goldensoph, G., Squires, K., Cargnelutti, M. & Portela, L. 2008 Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international collaborative benchmark test. Intl J. Heat Mass Transfer 34 (9), 879893.Google Scholar
Mathai, V., Lohse, D. & Sun, C. 2020 Bubbly and buoyant particle–laden turbulent flows. Annu. Rev. Condens. Matter Phys. 11 (1), 529559.CrossRefGoogle Scholar
Maxey, M.R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.CrossRefGoogle Scholar
Maxey, M.R. & Riley, J.J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.CrossRefGoogle Scholar
Meng, W.-S., Zhao, C.-B., Wu, J.-Z., Wang, B.-F., Zhou, Q. & Chong, K.L. 2024 Simulation of flow and debris migration in extreme ultraviolet source vessel. Phys. Fluids 36 (2), 023302.Google Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a Voronoïanalysis. Phys. Fluids 22 (10), 103304.CrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2012 Analyzing preferential concentration and clustering of inertial particles in turbulence. Intl J. Multiphase Flow 40, 118.CrossRefGoogle Scholar
Ni, R. 2024 Deformation and breakup of bubbles and drops in turbulence. Annu. Rev. Fluid Mech. 56 (1), 319347.CrossRefGoogle Scholar
Ostilla, R., Stevens, R.J., Grossmann, S., Verzicco, R. & Lohse, D. 2013 Optimal Taylor–Couette flow: direct numerical simulations. J. Fluid Mech. 719, 1446.CrossRefGoogle Scholar
Qiao, J., Deng, R. & Wang, C.-H. 2015 Particle motion in a Taylor vortex. Intl J. Multiphase Flow 77, 120130.CrossRefGoogle Scholar
Rashidi, M., Hetsroni, G. & Banerjee, S. 1990 Particle-turbulence interaction in a boundary layer. Intl J. Multiphase Flow 16 (6), 935949.CrossRefGoogle Scholar
Reade, W.C. & Collins, L.R. 2000 Effect of preferential concentration on turbulent collision rates. Phys. Fluids 12 (10), 25302540.CrossRefGoogle Scholar
Reeks, M. 1983 The transport of discrete particles in inhomogeneous turbulence. J. Aerosol Sci. 14 (6), 729739.CrossRefGoogle Scholar
Rokkam, R.G., Fox, R.O. & Muhle, M.E. 2010 Computational fluid dynamics and electrostatic modeling of polymerization fluidized-bed reactors. Powder Technol. 203 (2), 109124.CrossRefGoogle Scholar
Rüdiger, G., Gellert, M., Hollerbach, R., Schultz, M. & Stefani, F. 2018 Stability and instability of hydromagnetic Taylor–Couette flows. Phys. Rep. 741, 189.CrossRefGoogle Scholar
Sardina, G., Schlatter, P., Brandt, L., Picano, F. & Casciola, C.M. 2012 Wall accumulation and spatial localization in particle-laden wall flows. J. Fluid Mech. 699, 5078.CrossRefGoogle Scholar
Saw, E.W., Shaw, R.A., Ayyalasomayajula, S., Chuang, P.Y. & Gylfason, A. 2008 Inertial clustering of particles in high-Reynolds-number turbulence. Phys. Rev. Lett. 100 (21), 214501.CrossRefGoogle ScholarPubMed
Schrimpf, M., Esteban, J., Warmeling, H., Färber, T., Behr, A. & Vorholt, A.J. 2021 Taylor–Couette reactor: principles, design, and applications. AIChE J. 67 (5), e17228.CrossRefGoogle Scholar
Spandan, V., Lohse, D. & Verzicco, R. 2016 a Deformation and orientation statistics of neutrally buoyant sub-Kolmogorov ellipsoidal droplets in turbulent Taylor–Couette flow. J. Fluid Mech. 809, 480501.CrossRefGoogle Scholar
Spandan, V., Ostilla-Mónico, R., Verzicco, R. & Lohse, D. 2016 b Drag reduction in numerical two-phase Taylor–Couette turbulence using an Euler–Lagrange approach. J. Fluid Mech. 798, 411435.CrossRefGoogle Scholar
Spandan, V., Verzicco, R. & Lohse, D. 2018 Physical mechanisms governing drag reduction in turbulent Taylor–Couette flow with finite-size deformable bubbles. J. Fluid Mech. 849, R3.CrossRefGoogle Scholar
Squires, K.D. & Eaton, J.K. 1991 Preferential concentration of particles by turbulence. Phys. Fluids A: Fluid Dyn. 3 (5), 11691178.CrossRefGoogle Scholar
Su, J., Zhang, Y.-B., Wang, C., Yi, L., Xu, F., Fan, Y., Wang, J. & Sun, C. 2025 How interfacial tension enhances drag in turbulent Taylor–Couette flow with neutrally buoyant and equally viscous droplets. J. Fluid Mech. 1002, A2.CrossRefGoogle Scholar
Taylor, G.I. 1923 a The motion of ellipsoidal particles in a viscous fluid. Proc. R. Soc. Lond. A 103 (720), 5861.Google Scholar
Taylor, G.I. 1923 b VIII. Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. A 223 (605–615), 289343.Google Scholar
Tetlow, N., Graham, A.L., Ingber, M.S., Subia, S.R., Mondy, L.A. & Altobelli, S.A. 1998 Particle migration in a Couette apparatus: experiment and modeling. J. Rheol. 42 (2), 307327.CrossRefGoogle Scholar
Tsai, S.-T. 2022 Sedimentation motion of sand particles in moving water (I): the resistance on a small sphere moving in non-uniform flow. Theor. Appl. Mech. Lett. 12 (6), 100392.CrossRefGoogle Scholar
Verzicco, R. & Orlandi, P. 1996 A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123 (2), 402414.CrossRefGoogle Scholar
Vinkovic, I., Doppler, D., Lelouvetel, J. & Buffat, M. 2011 Direct numerical simulation of particle interaction with ejections in turbulent channel flows. Intl J. Multiphase Flow 37 (2), 187197.CrossRefGoogle Scholar
Voth, G.A. & Soldati, A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49 (1), 249276.CrossRefGoogle Scholar
Wang, C., Yi, L., Jiang, L.-F. & Sun, C. 2022 How do the finite-size particles modify the drag in Taylor–Couette turbulent flow. J. Fluid Mech. 937, A15.CrossRefGoogle Scholar
Zahtila, T., Chan, L., Ooi, A. & Philip, J. 2023 Particle transport in a turbulent pipe flow: direct numerical simulations, phenomenological modelling and physical mechanisms. J. Fluid Mech. 957, A1.CrossRefGoogle Scholar
Zhang, H., Cui, Y. & Zheng, X. 2023 How electrostatic forces affect particle behaviour in turbulent channel flows. J. Fluid Mech. 967, A8.CrossRefGoogle Scholar
Zhang, H. & Zhou, Y.-H. 2020 Reconstructing the electrical structure of dust storms from locally observed electric field data. Nat. Commun. 11 (1), 5072.CrossRefGoogle ScholarPubMed
Zhang, Y. & Zhou, Q. 2024 Low-Prandtl-number effects on global and local statistics in two-dimensional Rayleigh–Bénard convection. Phys. Fluids 36 (1), 015107.Google Scholar
Zhang, Y.-B., Fan, Y., Su, J., Xi, H.D. & Sun, C. 2025 Global drag reduction and local flow statistics in Taylor–Couette turbulence with dilute polymer additives. J. Fluid Mech. 1002, A33.CrossRefGoogle Scholar
Zhao, B. & Wu, J. 2006 Modeling particle deposition onto rough walls in ventilation duct. Atmos. Environ. 40 (36), 69186927.CrossRefGoogle Scholar
Zhao, C.-B., Wang, B.-F., Wu, J.-Z., Chong, K.L. & Zhou, Q. 2022 a Suppression of flow reversals via manipulating corner rolls in plane Rayleigh–Bénard convection. J. Fluid Mech. 946, A44.CrossRefGoogle Scholar
Zhao, C.-B., Zhang, Y.-Z., Wang, B.-F., Wu, J.-Z., Chong, K.L. & Zhou, Q. 2022 b Modulation of turbulent Rayleigh–Bénard convection under spatially harmonic heating. Phys. Rev. E 105 (5), 055107.CrossRefGoogle ScholarPubMed