Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T16:08:03.626Z Has data issue: false hasContentIssue false

Space-scale-time dynamics of liquid–gas shear flow

Published online by Cambridge University Press:  15 February 2021

F. Thiesset*
Affiliation:
CNRS, Normandy Univ., UNIROUEN, INSA Rouen, CORIA, 76000Rouen, France
T. Ménard
Affiliation:
CNRS, Normandy Univ., UNIROUEN, INSA Rouen, CORIA, 76000Rouen, France
C. Dumouchel
Affiliation:
CNRS, Normandy Univ., UNIROUEN, INSA Rouen, CORIA, 76000Rouen, France
*
Email address for correspondence: [email protected]

Abstract

Two-point statistical equations of the liquid-phase indicator function are used to appraise the physics of liquid–gas shear flows. The contribution of the different processes in the combined scale/physical space is quantified by means of direct numerical simulations of a temporally liquid–gas shear layer. Light is first shed onto the relationship between two-point statistics of the phase indicator and the geometrical properties of the liquid/gas interface, namely its surface density, mean and Gaussian curvatures. Then, the theory is shown to be adequate for highlighting the preferential direction of liquid transport in either scale or flow position space. A direct cascade process, i.e. from large to small scales, is observed for the total phase indicator field, while the opposite applies for the randomly fluctuating part, suggesting a transfer of ‘energy’ from the mean to the fluctuating component. In the space of positions within the flow, the flux tends to redistribute energy from the centreline to the edge of the shear layer. The influence of the mean shear rate and statistical inhomogeneities on the different scales of the liquid field are revealed.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adler, P.M., Jacquin, C.G. & Quiblier, J.A. 1990 Flow in simulated porous media. Intl J. Multiphase Flow 16 (4), 691712.CrossRefGoogle Scholar
Anez, J., Ahmed, A., Hecht, N., Duret, B., Reveillon, J. & Demoulin, F.X. 2019 Eulerian–Lagrangian spray atomization model coupled with interface capturing method for diesel injectors. Intl J. Multiphase Flow 113, 325342.CrossRefGoogle Scholar
Arns, C.H., Knackstedt, M.A. & Mecke, K.R. 2004 Characterisation of irregular spatial structures by parallel sets and integral geometric measures. Colloids Surf. A 241 (1–3), 351372.CrossRefGoogle Scholar
Berryman, J.G. 1987 Relationship between specific surface area and spatial correlation functions for anisotropic porous media. J. Math. Phys. 28 (1), 244245.CrossRefGoogle Scholar
Candel, S.M. & Poinsot, T.J. 1990 Flame stretch and the balance equation for the flame area. Combust. Sci. Technol. 70 (1–3), 115.CrossRefGoogle Scholar
Casciola, C.M., Gualtieri, P., Benzi, R. & Piva, R. 2003 Scale-by-scale budget and similarity laws for shear turbulence. J. Fluid Mech. 476, 105114.CrossRefGoogle Scholar
Ciccariello, S. 1995 Integral expressions of the derivatives of the small-angle scattering correlation function. J. Math. Phys. 36 (1), 219246.CrossRefGoogle Scholar
Cimarelli, A., De Angelis, E. & Casciola, C.M. 2013 Paths of energy in turbulent channel flows. J. Fluid Mech. 715, 436451.CrossRefGoogle Scholar
Danaila, L., Antonia, R.A. & Burattini, P. 2004 Progress in studying small-scale turbulence using ‘exact’ two-point equations. New J. Phys. 6 (1), 128.CrossRefGoogle Scholar
Debye, P., Anderson, H.R. Jr& Brumberger, H. 1957 Scattering by an inhomogeneous solid. II. The correlation function and its application. J. Appl. Phys. 28 (6), 679683.CrossRefGoogle Scholar
Di Battista, R., Bermejo-Moreno, I., Ménard, T., de Chaisemartin, S. & Massot, M. 2019 Post-processing of two-phase dns simulations exploiting geometrical features and topological invariants to extract flow statistics: application to canonical objects and the collision of two droplets. In 10th International Conference on Multiphase Flow, Rio de Janeiro, Brazil.Google Scholar
Drew, D.A. 1990 Evolution of geometric statistics. SIAM J. Appl. Maths 50 (3), 649666.CrossRefGoogle Scholar
Duret, B., Luret, G., Reveillon, J., Ménard, T., Berlemont, A. & Demoulin, F.X. 2012 DNS analysis of turbulent mixing in two-phase flows. Intl J. Multiphase Flow 40, 93105.CrossRefGoogle Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71 (3), 036601.CrossRefGoogle Scholar
Essadki, M., Drui, F., Larat, A., Ménard, T. & Massot, M. 2019 Statistical modeling of the gas–liquid interface using geometrical variables: toward a unified description of the disperse and separated phase flows. Intl J. Multiphase Flow 120, 103084.Google Scholar
Federer, H. 1959 Curvature measures. Trans. Am. Math. Soc. 93 (3), 418491.CrossRefGoogle Scholar
Fedkiw, R.P., Aslam, T., Merriman, B. & Osher, S. 1999 A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152 (2), 457492.CrossRefGoogle Scholar
Fitzhugh, R. 1983 Statistical properties of the asymmetric random telegraph signal, with applications to single-channel analysis. Math. Biosci. 64 (1), 7589.CrossRefGoogle Scholar
Frisch, H.L. & Stillinger, F.H. 1963 Contribution to the statistical geometric basis of radiation scattering. J. Chem. Phys. 38 (9), 22002207.CrossRefGoogle Scholar
Fuster, D., Matas, J.-P., Marty, S., Popinet, S., Hoepffner, J., Cartellier, A. & Zaleski, S. 2013 Instability regimes in the primary breakup region of planar coflowing sheets. J. Fluid Mech. 736, 150176.CrossRefGoogle Scholar
Gatti, D., Remigi, A., Chiarini, A., Cimarelli, A. & Quadrio, M. 2019 An efficient numerical method for the generalised kolmogorov equation. J. Turbul. 20 (8), 457480.CrossRefGoogle Scholar
Giannakopoulos, G.K., Frouzakis, C.E., Mohan, S., Tomboulides, A.G. & Matalon, M. 2019 Consumption and displacement speeds of stretched premixed flames-theory and simulations. Combust. Flame 208, 164181.CrossRefGoogle Scholar
Gorokhovski, M. & Herrmann, M. 2008 Modeling primary atomization. Annu. Rev. Fluid Mech. 40, 343366.CrossRefGoogle Scholar
Grimson, M.J. 1983 Small-angle scattering from colloidal dispersions. J. Chem. Soc. 79 (6), 817832.Google Scholar
Hill, R.J. 2002 Exact second-order structure-function relationships. J. Fluid Mech. 468, 317326.CrossRefGoogle Scholar
Kirste, R. & Porod, G. 1962 Röntgenkleinwinkelstreuung an kolloiden systemen asymptotisches verhalten der streukurven. Koll. Z. 184 (1), 17.CrossRefGoogle Scholar
Lasheras, J.C. & Hopfinger, E.J. 2000 Liquid jet instability and atomization in a coaxial gas stream. Annu. Rev. Fluid Mech. 32 (1), 275308.CrossRefGoogle Scholar
Lebas, R., Menard, T., Beau, P.A., Berlemont, A. & Demoulin, F.X. 2009 Numerical simulation of primary break-up and atomization: DNS and modelling study. Intl J. Multiphase Flow 35 (3), 247260.CrossRefGoogle Scholar
Ling, Y., Fuster, D., Tryggvason, G. & Zaleski, S. 2019 A two-phase mixing layer between parallel gas and liquid streams: multiphase turbulence statistics and influence of interfacial instability. J. Fluid Mech. 859, 268307.CrossRefGoogle Scholar
Ling, Y., Fuster, D., Zaleski, S. & Tryggvason, G. 2017 Spray formation in a quasiplanar gas-liquid mixing layer at moderate density ratios: a numerical closeup. Phys. Rev. Fluids 2 (1), 014005.CrossRefGoogle Scholar
Marati, N., Casciola, C.M. & Piva, R. 2004 Energy cascade and spatial fluxes in wall turbulence. J. Fluid Mech. 521, 191215.CrossRefGoogle Scholar
Marmottant, P. & Villermaux, E. 2004 On spray formation. J. Fluid Mech. 498, 73111.CrossRefGoogle Scholar
Ménard, T., Tanguy, S. & Berlemont, A. 2007 Coupling level set/VOF/ghost fluid methods: validation and application to 3D simulation of the primary break-up of a liquid jet. Intl J. Multiphase Flow 33 (5), 510524.CrossRefGoogle Scholar
Morán, J., Fuentes, A., Liu, F. & Yon, J. 2019 Fracval: an improved tunable algorithm of cluster-cluster aggregation for generation of fractal structures formed by polydisperse primary particles. Comput. Phys. Commun. 239, 225237.CrossRefGoogle Scholar
Pope, S.B. 1988 The evolution of surfaces in turbulence. Intl J. Engng Sci. 26 (5), 445469.CrossRefGoogle Scholar
Portela, F.A., Papadakis, G. & Vassilicos, J.C. 2017 The turbulence cascade in the near wake of a square prism. J. Fluid Mech. 825, 315352.CrossRefGoogle Scholar
Pumir, A. 1996 Turbulence in homogeneous shear flows. Phys. Fluids 8 (11), 31123127.CrossRefGoogle Scholar
Rosti, M.E., Ge, Z., Jain, S.S., Dodd, M.S. & Brandt, L. 2019 Droplets in homogeneous shear turbulence. J. Fluid Mech. 876, 962984.CrossRefGoogle Scholar
Rudman, M. 1998 A volume-tracking method for incompressible multifluid flows with large density variations. Intl J. Numer. Meth. Fluids 28 (2), 357378.3.0.CO;2-D>CrossRefGoogle Scholar
Sorensen, C.M. 2001 Light scattering by fractal aggregates: a review. Aero. Sci. Technol. 35 (2), 648687.CrossRefGoogle Scholar
Sussman, M., Smith, K.M., Hussaini, M.Y., Ohta, M. & Zhi-Wei, R. 2007 A sharp interface method for incompressible two-phase flows. J. Comput. Phys. 221 (2), 469505.CrossRefGoogle Scholar
Taguelmimt, N., Danaila, L. & Hadjadj, A. 2016 Effects of viscosity variations in temporal mixing layer. Flow Turbul. Combust. 96 (1), 163181.CrossRefGoogle Scholar
Thiesset, F., Dumouchel, C. & Ménard, T. 2019 a A new theoretical framework for characterizing the transport of liquid in turbulent two-phase flows. In ILASS-Europe, Paris.Google Scholar
Thiesset, F., Dumouchel, C., Ménard, T., Aniszewski, W., Vaudor, G. & Berlemont, A. 2019 b Probing liquid atomization using probability density functions, the volume-based scale distribution and differential geometry. In ILASS-Europe, Paris.Google Scholar
Thiesset, F., Duret, B., Ménard, T., Dumouchel, C., Reveillon, J. & Demoulin, F.X. 2020 Liquid transport in scale space. J. Fluid Mech. 886, A4.CrossRefGoogle Scholar
Thiesset, F. & Poux, A. 2020 Numerical assessment of the two-point statistical equations in liquid/gas flows. Tech. Rep. CNRS, Normandy Univ., UNIROUEN, INSA Rouen, CORIA. Available at: https://hal.archives-ouvertes.fr/hal-02614565.Google Scholar
Torquato, S. 2002 Random Heterogeneous Materials. Microstructure and Macroscopic Properties. Springer.CrossRefGoogle Scholar
Vaudor, G., Ménard, T., Aniszewski, W., Doring, M. & Berlemont, A. 2017 A consistent mass and momentum flux computation method for two phase flows. Application to atomization process. Comput. Fluids 152, 204216.CrossRefGoogle Scholar
Wu, H.-I. & Schmidt, P.W. 1971 Intersect distributions and small-angle X-ray scattering theory. J. Appl. Crystallogr. 4 (3), 224231.CrossRefGoogle Scholar
Yeung, P.K., Donzis, D.A. & Sreenivasan, K.R. 2005 High-Reynolds-number simulation of turbulent mixing. Phys. Fluids 17 (8), 081703.CrossRefGoogle Scholar
Zhang, J. 1996 Acceleration of five-point red-black gauss-seidel in multigrid for poisson equation. Appl. Maths Comput. 80 (1), 7393.CrossRefGoogle Scholar
Supplementary material: File

Thiesset et al. supplementary material

Thiesset et al. supplementary material

Download Thiesset et al. supplementary material(File)
File 16.8 MB