Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-07T19:29:22.346Z Has data issue: false hasContentIssue false

Sound waves in monodisperse gas-particle or vapour-droplet mixtures

Published online by Cambridge University Press:  21 April 2006

N. A. Gumerov
Affiliation:
Department of Mechanics and Mathematics of M. V. Lomonosov Moscow University, Moscow, 117234, USSR
A.I. Ivandaev
Affiliation:
Institute of North Problem Development of the USSR Academy Siberian Branch, Tumen, Post Box 2774, 625003, USSR
R. I. Nigmatulin
Affiliation:
Institute of North Problem Development of the USSR Academy Siberian Branch, Tumen, Post Box 2774, 625003, USSR

Abstract

A brief review of the relevant papers and an examination of the current status of research in the field of the acoustics of gas-particle suspensions are given. Non-stationary momentum, mass and energy transfer processes between a gas (vapour) and dispersed particles (droplets) under high-frequency acoustic perturbations are considered. A comparative evaluation of characteristic times and temperature differences for gas-particle and vapour-droplet mixtures subjected to acoustic perturbation is given. General dispersion equations to describe the propagation of weak monochromatic waves for a wide range of frequencies complying with the requirements of the acoustic homogeneity of the medium are derived. Frequency dependences of propagation velocity and attenuation coefficient of weak waves in water vapour-droplet mixtures are investigated. Frequency ranges are indicated over which different types of approximate theories are valid.

Type
Research Article
Copyright
© 1988 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altberg, W. & Holzman, M. 1925 Über die Absorption des Schalles in tröen Medien. Phys. Z. 26, 149157.Google Scholar
Bergmann, L. 1954 Der Ultraschall und seine Anwendung in Wisseschaft und Technik. Stuttgart: Hirzel.
Bhutani, P. O. & Chandran, P. 1977 Weak waves in dusty gas. Intl J. Engng Sci. 15, 910, 537544.Google Scholar
Borisov, A. A., Vakhgelt, A. F. & Nakoryakov, V. E. 1980 Propagation of long-wavelength finite-amplitude perturbation in gas-particle mixtures. Zh. Prikl. Mekh. Tekhn. Fiz. 5, 3338.Google Scholar
Borisov, A. A., Vakhgelt, A. F. & Nakoryakov, V. E. 1981 Propagation of finite-amplitude perturbations in gas-particle mixtures. Akust. Zh. 27, 6, 930932.Google Scholar
Buevich, Yu. A. & Fedotov, S. P. 1980 On weakly nonlinear perturbations in concentrated gas-particle mixtures. Zh. Prikl. Mekh. Tekhn. Fiz. 3, 9095.Google Scholar
Chow, J. C. F. 1964 Attenuation of acoustic waves in dilute emulsions and suspensions. J. Acoust. Soc. Am. 36, 23952401.Google Scholar
Cole, J. E. & Dobbins, R. A. 1970 Propagation of sound through atmospheric fog. J. Atmos. Sci. 27, 426434.Google Scholar
Cole, J. E. & Dobbins, R. A. 1971 Measurements of attenuation and dispersion of sound by a warm air fog. J. Atmos. Sci. 28, 202209.Google Scholar
Davidson, G. A. 1975a A Burgers' equation approach to finite-amplitude acoustics in aerosol media. J. Sound Vib. 38, 475495.Google Scholar
Davidson, G. A. 1975b Sound propagation in fogs. J. Atmos. Sci. 32, 22012205.Google Scholar
Davidson, G. A. 1976 A Burgers' equation for finite amplitude acoustics in fogs. J. Sound Vib. 45, 473485.Google Scholar
Davidson, G. A. & Scott, D. S. 1973 Propagation of finite-amplitude sound through aerosols. Proc. Symp. Finite-Amplitude Wave Eff. Fluids, Copenhagen, 1973. Guilford, 1974, pp. 3036.Google Scholar
Deich, M. E. & Filippov, G. A. 1968 Gas Dynamics of Two-Phase Media. Moscow: Energy.
Dobbins, R. A. & Temkins, S. 1964 Measurements of particulate acoustic attenuation. AIAA J. 2, 11061111.Google Scholar
Epstein, P. S. & Carhart, R. R. 1953 The absorption of sound in suspensions and emulsions I. Water fog in air. J. Acoust. Soc. Am. 25, 553565.Google Scholar
Fuks, N. A. 1955 Mechanics of Aerosols. Moscow: AN SSSR Publ.
Gumerov, N. A., Ivandaev, A. I. & Nigmatulin, R. I. 1983 Dispersion and dissipation of acoustic waves in gas-particulate mixtures. Dokl. Akad. Nauk. SSSR 272, 560563.Google Scholar
Isakovich, M. A. 1948 On the propagation of sound in emulsions. Zh. Exper. i Teor. Fiz. 18, 907912.Google Scholar
Isakovich, M. A. 1973 General Acoustics. Moscow: Nauka.
Ivandaev, A. I. 1978 Propagation of weak perturbations in two-phase vapour-droplet mixtures. Akust. Zh. 24, 7278.Google Scholar
Ivandaev, A. I. & Nigmatulin, R. I. 1970 On the propagation of weak perturbations in two-phase media with phase transformations. Zh. Prikl. Mekh. Tekhn. Fiz. 5, 7377.Google Scholar
Kleiman, Ya. Z. 1958 On the attenuation of harmonic waves in mixtures. Akust. Zh. 4, 365367.Google Scholar
Kleiman, Ya. Z. 1961 Speed of sound in mixtures, containing suspended particles. Akust. Zh. 7, 262264.Google Scholar
Knudsen, V. O. 1931 The effect of humidity upon the absorption of sound in a room. J. Acoust. Soc. Am. 3, 126138.Google Scholar
Knudsen, V. O., Willson, J. V. & Anderson, N. S. 1948 The attenuation of sound in fog and smoke. J. Acoust. Soc. Am. 20, 849857.Google Scholar
Laidler, T. J. & Richardson, E. G. 1938 The absorption of supersonics in smokes. J. Acoust. Soc. Am. 9, 217223.Google Scholar
Lamb, H. 1945 Hydrodynamics. Dover.
Landau, L. D. & Lifshitz, E. M. 1954 Fluid Mechanics. Moscow: Gos. Izdat. Teor. Lit.
Lymon, F. A. & Chen, D. M. 1978 Acoustic attenuation in a nonuniform gas containing droplets. AIAA J. 16, 503509.Google Scholar
Marble, F. E. 1970 Dynamics of dusty gases. Ann. Rev. Fluid Mech. 2, 397446.Google Scholar
Marble, F. E. & Wooten D. C. 1970 Sound attenuation in a condensing vapor. Phys. Fluids 13, 26572664.Google Scholar
Meyer zur Cappelen, F. 1981 Ausbreitung von wellen kleiner amplitude in einem relaxierenden und strahlenden gas-teilchen-gemish. Acta Mech. 36, 12; 339.Google Scholar
Mori, Y., Hijikata, K. & Kamada, H. 1971 Sound velocity in gas containing small particles. Trans. Japan Soc. Mech. Engnrs 37, 546555.Google Scholar
Nigmatulin, R. I. 1978 Fundamentals of Mechanics of Heterogeneous Media. Moscow: Nauka
Nigmatulin, R. I. 1979 Spatial averaging in the mechanics of heterogeneous and dispersed systems. Intl J. Multiphase Flow 5, 353385.Google Scholar
Nikaien, K., Peddieson, J. & Au, B. C. 1983 One-dimensional acoustic wave propagation in a particulate suspension. Lett. Appl. Engng Sci. 21, 851862.Google Scholar
Oswatititsch, Kl. Von 1941 Die dispersion und absorption des shalles in wolken. Phys. Z. 42, 365378.Google Scholar
Popov, V. S. 1968 On the propagation of small perturbations in gases with suspended solid particles. Inzh.-Fiz. Zh. 14, 716721.Google Scholar
Popov, V. S. 1970 On sound propagation in suspensions. Inzh.-Fiz. Zh. 19, 297304.Google Scholar
Rasmussen, M. L. 1977 On wave propagation in particulate suspensions. Trans. ASME E: J. Appl. Mech. 44, 354355.Google Scholar
Richardson, E. G. 1962 Ultrasonic Physics. Elsevier.
Rochelle, S. G. & Peddieson, J. 1976 One-dimensional wave propagation in particulate suspensions. In Proc. 13th Soc. Engng Sci. Meeting. Rec. Adv. Engng Sci. vol. 3. NASA CP 2001, pp. 947954.Google Scholar
Rosenfeld, S. Kh. 1983 Dispersion and absorption of sound in atmospheric fog. Akust. Zh. 29, 251256.Google Scholar
Rytov, S. M., Vladimirsky, V. V. & Galanin, M. D. 1938 Sound propagation in dispersed systems. Zh. Exper. i Teor. Fiz. 8, 614621.Google Scholar
Ryzhkov, A. F. & Tolmachev, E. M. 1983 On the propagation of small perturbations in concentrated dispersed systems. Inzh.-Fiz. Zh. 44, 748755.Google Scholar
Sewell, S. J. T. 1910 On the extinction of sound in a viscous atmosphere by small obstacles of cylindrical and spherical form.. Phil. Trans. R. Soc. Lond. A 210, 239270.Google Scholar
Soo, S. L. 1960 Effect of transport processes on attenuation and dispersion in aerosols. J. Acoust. Soc. Am. 32, 943946.Google Scholar
Soo, S. L. 1967 Fluid Dynamics of Multi-phase Systems. Toronto-London: Blaisdell.
Städtke, H. 1968 Speed of sound and shock waves in two phase flows. Proc. Symp. Electr. from MHD. vol. 3. Warsaw. Vienna. pp. 13131339.
Stasenko, A. L. 1973 On the dispersion of sound in a mixture of gas with heat-radiating macroscopic particles. Akust. Zh. 19, 891896.Google Scholar
Tarakanov, S. V. & Todes, O. M. 1982 Burgers' approximation for plane long-wavelength perturbations in air-particulate mixtures. Zh. Prikl. Mekh. i. Tekhn. Fiz. 1, 99106.Google Scholar
Temkin, S. & Dobbins, R. A. 1966a Attenuation and dispersion of sound by particulate relaxation processes. J. Acoust. Soc. Am. 40, 317324.Google Scholar
Temkin, S. & Dobbins, R. A. 1966b Measurement of attenuation and dispersion of sound by an aerosol. J. Acoust. Soc. Am. 40, 10161024.Google Scholar
Viglin, A. 1938 Propagation of vibrations in a two-phase vapour-liquid system. Zh. Tekhn. Fiz. 8, 275285; 355–368.Google Scholar
Weber, M. 1980 Schallgenze bei Gas-Feststoff-Gemischen. TIZ-Fachber. Rohst. Engng 104, 700703.Google Scholar
Yamamoto, Y., Kobayashi, S. & Takano, A. 1980 Analysis on the propagation of finite amplitude disturbances in gas-particle mixtures. Trans, Japan Soc. Aeronaut. Space Sci. 22, 229240.Google Scholar
Zink, J. W. & Delsasso, L. P. 1958 Attenuation and dispersion of sound by solid particles suspended in air. J. Acoust. Soc. Am. 30, 765771.Google Scholar
Zolotarev, P. P. 1964 On the propagation of weak perturbations through mixtures. Izv. Akad. Nauk. SSSR, Mekh. i Mashinostr. 4, 178180.Google Scholar