Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T22:40:12.876Z Has data issue: false hasContentIssue false

Sound generation by turbulent premixed flames

Published online by Cambridge University Press:  19 March 2018

Ali Haghiri*
Affiliation:
Department of Mechanical Engineering, University of Melbourne, VIC 3010, Australia
Mohsen Talei
Affiliation:
Department of Mechanical Engineering, University of Melbourne, VIC 3010, Australia
Michael J. Brear
Affiliation:
Department of Mechanical Engineering, University of Melbourne, VIC 3010, Australia
Evatt R. Hawkes
Affiliation:
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney 2052, Australia
*
Email address for correspondence: [email protected]

Abstract

This paper presents a numerical study of the sound generated by turbulent, premixed flames. Direct numerical simulations (DNS) of two round jet flames with equivalence ratios of 0.7 and 1.0 are first carried out. Single-step chemistry is employed to reduce the computational cost, and care is taken to resolve both the near and far fields and to avoid noise reflections at the outflow boundaries. Several significant features of these two flames are noted. These include the monopolar nature of the sound from both flames, the stoichiometric flame being significantly louder than the lean flame, the observed frequency of peak acoustic spectral amplitude being consistent with prior experimental studies and the importance of so-called ‘flame annihilation’ events as acoustic sources. A simple model that relates these observed annihilation events to the far-field sound is then proposed, demonstrating a surprisingly high degree of correlation with the far-field sound from the DNS. This model is consistent with earlier works that view a premixed turbulent flame as a distribution of acoustic sources, and provides a physical explanation for the well-known monopolar content of the sound radiated by premixed turbulent flames.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balachandran, R., Ayoola, B. O., Kaminski, C. F., Dowling, A. P. & Mastorakos, E. 2005 Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust. Flame 143 (1), 3755.Google Scholar
Birbaud, A. L., Ducruix, S., Durox, D. & Candel, S. 2006 Dynamics of free jets modulated by plane acoustic waves: part 2. Numerical simulations. In 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), Cambridge, MA, AIAA Paper 2006-2670.Google Scholar
Bogey, C., Bailly, C. & Juvé, D. 2000 Numerical simulation of sound generated by vortex pairing in a mixing layer. AIAA J. 38 (12), 22102218.Google Scholar
Bragg, S. L. 1963 Combustion noise. J. Inst. Fuel 36 (1), 1216.Google Scholar
Brear, M. J., Nicoud, F., Talei, M., Giauque, A. & Hawkes, E. R. 2012 Disturbance energy transport and sound production in gaseous combustion. J. Fluid Mech. 707, 5373.Google Scholar
Bui, T. P., Ihme, M., Schröder, W. & Pitsch, H. 2009 Analysis of different sound source formulations to simulate combustion generated noise using a hybrid LES/APE-RF method. Intl J. Aeroacoust. 8 (1), 95123.Google Scholar
Bui, T. P., Meinke, M., Schröder, W., Flemming, F., Sadiki, A. & Janicka, J.2005 A hybrid method for combustion noise based on LES and APE. AIAA Paper 2005-3014.Google Scholar
Bui, T. P., Schröder, W. & Meinke, M. 2008 Numerical analysis of the acoustic field of reacting flows via acoustic perturbation equations. Comput. Fluids 37 (9), 11571169.Google Scholar
Candel, S., Durox, D. & Schuller, T. 2004 Flame interactions as a source of noise and combustion instabilities. In Collection of Technical Papers-10th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2004-2928, pp. 1444–1454.Google Scholar
Chakraborty, N. & Cant, R. S. 2009 Direct numerical simulation analysis of the flame surface density transport equation in the context of large eddy simulation. Proc. Combust. Inst. 32 (1), 14451453.Google Scholar
Chakraborty, N., Konstantinou, I. & Lipatnikov, A. 2016 Effects of Lewis number on vorticity and enstrophy transport in turbulent premixed flames. Phys. Fluids 28 (1), 015109.Google Scholar
Chen, C. L. & Sohrab, S. H. 1995 Upstream interactions between planar symmetric laminar methane premixed flames. Combust. Flame 101 (3), 360370.Google Scholar
Chen, J. H., Choudhary, A., De Supinski, B., DeVries, M, Hawkes, E. R., Klasky, S., Liao, W. K., Ma, K. L., Mellor-Crummey, J., Podhorszki, N. et al. 2009 Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Disc. 2 (1), 015001.Google Scholar
Clavin, P. & Joulin, G. 1983 Premixed flames in large scale and high intensity turbulent flow. J. Phys. Lett. 44 (1), 112.Google Scholar
Colonius, T., Lele, S. K. & Moin, P. 1997 Sound generation in a mixing layer. J. Fluid Mech. 330, 375409.Google Scholar
Docquier, N. & Candel, S. 2002 Combustion control and sensors: a review. Prog. Energy Combust. Sci. 28 (2), 107150.Google Scholar
Dowling, A. P. 1992 Thermoacoustic sources and instabilities. In Modern Methods in Analytical Acoustics, chap. 13, pp. 378403. Springer.Google Scholar
Dowling, A. P. & Ffowcs Williams, J. E. 1983 Sound and Sources of Sound. Horwood.Google Scholar
Dowling, A. P. & Mahmoudi, Y. 2015 Combustion noise. Proc. Combust. Inst. 35, 65100.Google Scholar
Dunstan, T. D., Swaminathan, N., Bray, K. N. C. & Kingsbury, N. G. 2013 Flame interactions in turbulent premixed twin V-flames. Combust. Sci. Technol. 185 (1), 134159.Google Scholar
Echekki, T. & Chen, J. H. 1999 Analysis of the contribution of curvature to premixed flame propagation. Combust. Flame 118 (1), 308311.Google Scholar
Echekki, T., Chen, J. H. & Gran, I. 1996 The mechanism of mutual annihilation of stoichiometric premixed methane–air flames. Symp. Intl Combust. 26 (1), 855863.Google Scholar
Flemming, F., Sadiki, A. & Janicka, J. 2007 Investigation of combustion noise using a LES/CAA hybrid approach. Proc. Combust. Inst. 31, 31893196.Google Scholar
Fogla, N., Creta, F. & Matalon, M. 2017 The turbulent flame speed for low-to-moderate turbulence intensities: hydrodynamic theory vs. experiments. Combust. Flame 175, 155169.Google Scholar
Griffiths, R. A. C., Chen, J. H., Kolla, H., Cant, R. S. & Kollmann, W. 2015 Three-dimensional topology of turbulent premixed flame interaction. Proc. Combust. Inst. 35 (2), 13411348.Google Scholar
Haworth, D. C. & Poinsot, T. J. 1992 Numerical simulations of lewis number effects in turbulent premixed flames. J. Fluid Mech. 244, 405436.Google Scholar
Hurle, I. R., Price, R. B., Sugden, T. M. & Thomas, A. 1968 Sound emission from open turbulent premixed flames. Proc. R. Soc. Lond. A 303 (1475), 409427.Google Scholar
Ihme, M. 2017 Combustion and engine-core noise. Annu. Rev. Fluid Mech. 49, 277310.Google Scholar
Ihme, M. & Pitsch, H. 2012 On the generation of direct combustion noise in turbulent non-premixed flames. Intl J. Aeroacoust. 11 (1), 2578.Google Scholar
Ihme, M., Pitsch, H. & Bodony, D. 2009 Radiation of noise in turbulent non-premixed flames. Proc. Combust. Inst. 32 (1), 15451553.Google Scholar
Jiménez, C., Haghiri, A., Talei, M., Brear, M. J. & Hawkes, E. R. 2015 Sound generation by premixed flame annihilation with full and simple chemistry. Proc. Combust. Inst. 35, 33173325.Google Scholar
Karami, S., Hawkes, E. R., Talei, M. & Chen, J. H. 2015 Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame. J. Fluid Mech. 777, 633689.Google Scholar
Karami, S., Hawkes, E. R., Talei, M. & Chen, J. H. 2016 Edge flame structure in a turbulent lifted flame: a direct numerical simulation study. Combust. Flame 169, 110128.Google Scholar
Karami, S., Talei, M., Hawkes, E. R. & Chen, J. H. 2017 Local extinction and reignition mechanism in a turbulent lifted flame: a direct numerical simulation study. Proc. Combust. Inst. 36 (2), 16851692.Google Scholar
Kee, R. J., Grcar, J. F., Smooke, M. D., Miller, J. A. & Meeks, E.1985 Premix: a fortran program for modeling steady laminar one-dimensional premixed flames. Sandia National Laboratories Report.Google Scholar
Kennedy, C. A., Carpenter, M. H. & Lewis, R. M. 2000 Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Maths 35 (3), 177219.Google Scholar
Kidin, N., Librovich, V., MacQuisten, M., Roberts, J. & Vuillermoz, M. 1988 Possible acoustic source in turbulent combustion. Dyn. Reactive Syst. Part 1: Flames 1, 336348.Google Scholar
Kotake, S. & Takamoto, K. 1990 Combustion noise: effects of the velocity turbulence of unburned mixture. J. Sound Vib. 139 (1), 920.Google Scholar
Law, C. K. & Sung, C. J. 2000 Structure, aerodynamics, and geometry of premixed flamelets. Prog. Energy Combust. Sci. 26 (4), 459505.Google Scholar
Lieuwen, T. C. 2012 Unsteady Combustor Physics. Cambridge University Press.Google Scholar
Lighthill, M. J. 1952 On sound generated aerodynamically: I. General theory. Proc. R. Soc. Lond. A 211, 564587.Google Scholar
Lighthill, M. J. 1954 On sound generated aerodynamically: II. Turbulence as a source of sound. Proc. R. Soc. Lond. A 222 (1148), 132.Google Scholar
Liu, Y. 2015 Two-time correlation of heat release rate and spectrum of combustion noise from turbulent premixed flames. J. Sound Vib. 353, 119134.Google Scholar
Livebardon, T., Moreau, S., Poinsot, T. & Bouty, E.2015 Numerical investigation of combustion noise generation in a full annular combustion chamber. AIAA Paper 2015-2971.Google Scholar
Lockard, D. P. 2000 An efficient, two-dimensional implementation of the Ffowcs Williams and Hawkings equation. J. Sound Vib. 229 (4), 897911.Google Scholar
Miyauchi, T., Tanahashi, M. & Li, Y. 2001 Sound generation in chemically reacting mixing layers. In Smart Control of Turbulent Combustion, pp. 2838. Springer.Google Scholar
Passot, T. & Pouquet, A. 1987 Numerical simulation of compressible homogeneous flows in the turbulent regime. J. Fluid Mech. 181, 441466.Google Scholar
Poinsot, T., Echekki, T. & Mungal, M. G. 1992 A study of the laminar flame tip and implications for premixed turbulent combustion. Combust. Sci. Technol. 81 (1–3), 4573.Google Scholar
Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion. RT Edwards, Inc.Google Scholar
Rajaram, R., Gray, J. & Lieuwen, T.2006 Premixed combustion noise scaling: total power and spectra. AIAA Paper 2006–2612.Google Scholar
Rajaram, R. & Lieuwen, T. 2009 Acoustic radiation from turbulent premixed flames. J. Fluid Mech. 637, 357385.Google Scholar
Schuller, T., Durox, D. & Candel, S. 2003 Self-induced combustion oscillations of laminar premixed flames stabilized on annular burners. Combust. Flame 135 (4), 525537.Google Scholar
Silva, C. F., Leyko, M., Nicoud, F. & Moreau, S. 2013 Assessment of combustion noise in a premixed swirled combustor via large-eddy simulation. Comput. Fluids 78, 19.Google Scholar
Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C. L. Jr et al. 1999 GRI 3.0 Mechanism. Gas Research Institute (http://www.me.berkeley.edu/gri_mech).Google Scholar
Smith, T. J. B. & Kilham, J. K. 1963 Noise generation by open turbulent flames. J. Acoust. Soc. Am. 35, 715724.Google Scholar
Strahle, W. C. 1978 Combustion noise. Prog. Energy Combust. Sci. 4 (3), 157176.Google Scholar
Strahle, W. C. & Shivashankara, B. N. 1975 A rational correlation of combustion noise results from open turbulent premixed flames. Symp. Intl Combust. 15 (1), 13791385.Google Scholar
Sun, C. J. & Law, C. K. 1998 On the consumption of fuel pockets via inwardly propagating flames. Symp. Intl Combust. 27 (1), 963970.Google Scholar
Swaminathan, N., Balachandran, R., Xu, G. & Dowling, A. P. 2011a On the correlation of heat release rate in turbulent premixed flames. Proc. Combust. Inst. 33 (1), 15331541.Google Scholar
Swaminathan, N., Xu, G., Dowling, A. P. & Balachandran, R. 2011b Heat release rate correlation and combustion noise in premixed flames. J. Fluid Mech. 681, 80115.Google Scholar
Talei, M., Brear, M. J. & Hawkes, E. R. 2011 Sound generation by laminar premixed flame annihilation. J. Fluid Mech. 679, 194218.Google Scholar
Talei, M., Brear, M. J. & Hawkes, E. R. 2012a A parametric study of sound generation by premixed laminar flame annihilation. Combust. Flame 159 (2), 757769.Google Scholar
Talei, M., Brear, M. J. & Hawkes, E. R. 2014 A comparative study of sound generation by laminar, combusting and non-combusting jet flows. Theor. Comput. Fluid Dyn. 28 (4), 385408.Google Scholar
Talei, M., Hawkes, E. R. & Brear, M. J. 2012b A direct numerical simulation study of frequency and Lewis number effects on sound generation by two-dimensional forced laminar premixed flames. Proc. Combust. Inst. 34, 10931100.Google Scholar
Tanahashi, M., Tsukinari, S., Saitoh, T., Miyauchi, T., Choi, G.-M., Ikame, M., Kishi, T., Harumi, K. & Hiraoka, K. 2002 On the sound generation and its controls in turbulent combustion field. In Proceedings of 3rd Symposium on Smart Control of Turbulence, pp. 149160. University of Tokyo, Japan.Google Scholar
Wu, X. & Moin, P. 2008 A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech. 608, 81112.Google Scholar
Yoo, C. S. & Im, H. G. 2007 Characteristic boundary conditions for simulations of compressible reacting flows with multi-dimensional, viscous and reaction effects. Combust. Theor. Model. 11 (2), 259286.Google Scholar
Zhang, F., Habisreuther, P., Bockhorn, H., Nawroth, H. & Paschereit, C. 2013 On prediction of combustion generated noise with the turbulent heat release rate. Acta Acust. 99 (6), 940951.Google Scholar
Zhao, W. & Frankel, S. H. 2001 Numerical simulations of sound radiated from an axisymmetric premixed reacting jet. Phys. Fluids 13 (9), 26712681.Google Scholar

Haghiri et al. supplementary movie 1

Animation of the dimensionless dilatation field on the central plane through the jet for Φ=1.0.

Download Haghiri et al. supplementary movie 1(Video)
Video 1.6 MB

Haghiri et al. supplementary movie 2

Animation of the dimensionless dilatation field on the central plane through the jet for Φ=0.7.

Download Haghiri et al. supplementary movie 2(Video)
Video 1.2 MB